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Abstract

Crises in the nuclear era are commonly framed as “brinkmanship,” where actors
compete by raising the background risk of a nuclear exchange until one side lacks the
resolve to continue and backs down. But this framing may be too reductive: in practice,
actors deploy a range of coercive capabilities that both alter the risk of escalation and
shape political outcomes. How do these limited coercive capabilities shape outcomes
in nuclear crises? We analyze the brinkmanship framework, finding broadly that more
resolved actors will take greater escalation risks and perform better in conflict. We
also analyze a “contests of capabilities” framework, showing that when a state’s resolve
also shapes its willingness to compete at lower levels, more resolved actors may engage
in less risky or less decisive measures. We use a game-free methodology to study how
the underlying military fundamentals affect crisis behavior in settings with autonomous
escalation risk across a wide variety of bargaining games.
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Nuclear weapons have redefined international relations (Brodie 1966; Schelling 1980; Jervis

1979; Bas and Coe 2012; Spaniel 2019). Consider coercive diplomacy in the nuclear era.

Because a deliberate first strike using strategic nuclear weapons against a capable nuclear-

armed adversary is effectively a suicidal act, except in matters of existential importance,

states cannot wield these weapons as a credible direct threat (Schelling 1966). Instead, nu-

clear weapons shape coercive diplomacy through the possibility of their use. In crises in

the nuclear era, states now take actions that carry the risk of misstep, miscalculation, or

inadvertent escalation, all of which could lead to a catastrophic nuclear exchange (Brodie

1966; Schelling 1966, 1980; Powell 1989, 2015; Posen 2014). This new feature of great power

competition has led scholars to classify crises and limited engagements among nuclear powers

as exercises in “brinkmanship,” where states use these underlying escalation risks to demon-

strate their resolve to convince their opponents to stand down (Snyder 1965; Jervis 1976;

Schelling 1980, 1966; Powell 1989, 1990). These brinkmanship contests resemble a game of

“chicken” or of “rocking the canoe;” in them, adversaries seemingly stand eyeball to eyeball

while escalating nuclear risks, hoping that their rivals are less willing to run such risks and

blink first before disaster strikes.

The concept of brinkmanship has been incredibly useful in highlighting the new aspect of

risk-taking in international politics in the nuclear era. However, much of what occurs in the

nuclear era falls outside of this stylized framing. Consider the West’s support for Ukraine in

its war against Russia. By keeping Russia in a continued state of conflict, there exists the

possibility that a human error or a faulty missile detection system results in an inadvertent

escalation (Paul et al. 1990; Sagan 1994; Perrow 2011; Posen 2014). And, by running military

supply chains through NATO countries, through mistake or malice, a Russian General may

one day strike within a NATO state, thus raising the risk of a NATO-Russia war (Posen

2014). But despite these (even nuclear) escalation risks, the West’s arming of Ukraine is

not simply brinkmanship. The West arms Ukraine to protect the Ukrainian state and to

strain the Russian state. This is not to say that such arming is not without nuclear risks,
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and these risks have undoubtedly influenced which weapons systems are transferred by the

West. Instead, the West’s strategy in Ukraine is shaped both by the political efficacy of

supporting Ukraine and by the West’s willingness to accepting the nuclear risks that stem

from this support. And, the West’s backing of Ukraine is not unique. Examples such as

the Vietnam War, the Soviet Union’s suppression of the Hungarian Revolution in 1956, and

U.S. aid to the Afghan Mujahideen during the Soviet-Afghan War (1979–1989) all illustrate

a recurring pattern: while nuclear risks play a part in shaping crisis behavior, these crises are

much more than just leveraging nuclear risks to demonstrate resolve as described in classic

brinkmanship. To understand state behavior and coercive politics in the nuclear era, a more

general paradigm is needed.

We address this theoretical shortcoming. We begin by formally defining the brinkman-

ship theoretical framing. Within the brinkmanship framework, actors engage in a deter-

rence or bargaining game while taking actions that raise or lower the likelihood of a nuclear

exchange—for example, by remaining in a conventional conflict that could, with some prob-

ability, escalate. This framing encompasses seminal models of nuclear deterrence like Nale-

buff (1986), Powell (1989), and Powell (2015). Consistent with previous formal and informal

characterizations of conflict behavior within brinkmanship, we find that every equilibrium

of every brinkmanship game exhibits a similar pattern: if an actor is more resolved—that

is, they privately value the asset in dispute more—then that actor takes on higher risks and

attains higher expected rewards. To make this sweeping claim, we conduct a game-free anal-

ysis of the brinkmanship framing, along the along the lines of previous mechanism design

research (Banks 1990; Fey and Ramsay 2011; Akçay et al. 2012; Spaniel 2020; Liu 2021).

We then present and analyze a more general theoretical framing: “contests of capabilities.”

In the contests of capabilities framing, actors have different conflict technologies at their

disposal (like arming, engaging in limited war, conducting low-level operations, etc.) that,

through their use, can generate nuclear escalation risks as well as latent costs. This differs
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from the brinkmanship framing where costs can only be generated through the manipulation

of nuclear escalation risks. This new theoretical framing better represents the actions taken

by states within crises, like arming allies or deploying conventional forces, that have their

own costs outside of their effect on nuclear risks.1 We find that these contests of capabilities

exhibit very different behavioral patterns than brinkmanship contests: more resolved actors

may be less likely to risk a nuclear exchange and may perform worse within the game.2

This suggests that the patterns of behavior predicted in brinkmanship contests are, at best,

special cases of how states will behave in crises in the nuclear era and, at worst, will predict

the opposite of actual behavior.

Contests of capabilities predict new forms of crisis behavior because states are no longer

limited to leveraging nuclear escalation risks as their only costly action. As intuition, con-

sider what this game feature means for costly signaling, a common behavior within crisis

bargaining and deterrence games. In models like Powell (2015)—which falls within our clas-

sification as a brinkmanship model—an actor may find it opportunistic to signal that they

are high-resolve and willing to fight if challenged. Through the logic of costly signaling, they

can only credibly do so by undertaking some action that results in them bearing some costs.

Within Powell, the only costly action available is the generation of nuclear escalation risks;

this means that, mechanically, in order to issue a costly signal of their resolve, more resolve

actors must take on higher levels of nuclear risk. In contrast, within the contests of capabil-

ities framework, actors can demonstrate their resolve by taking actions that generate costs

outside of nuclear escalation risks, for example by investing in costly arming or by sending

military aid to an ally, or implementing costly sanctions.3 This new framework allows states
1As characterized here, a “brinkmanship crisis” is a special kind of “contest of capability” where there are

no latent costs (i.e. no costs outside of nuclear risks).
2Note: this latter finding has not yet been proven in the main text, but it’s basically been proven in

Kenkel and Schram (2024).
3This is not to say that these actions would not potentially alter nuclear escalation risks; rather, how

these actions alter nuclear escalation risks is a secondary concern. More theoretically, “burning cash” could
be part of a contest of capability game—functioning as a costly signal without changing nuclear escalation
risks—but not a brinkmanship game.
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to construct new, non-nuclear costly signals, thus undermining the relationship described

in brinkmanship games where more resolved actors take on greater risks. We demonstrate

that the results within the brinkmanship framing can break down when states are able to

undertake any costly action outside of manipulating nuclear risks, which, when considering

the wide range of actions that states can take in crises, is an empirical certainty.

We make three primary contributions. First, this paper characterizes a new, generalized

framework that better characterizes crisis behavior in the nuclear era. While the brinkman-

ship framework has been useful in highlighting new strategic tensions in the nuclear era,

we show that it makes a critical oversimplification: it does not consider a state’s ability to

undertake any action that generates costs outside of the manipulation of nuclear risks. We

remedy this by introducing the contests of capabilities framework, where a state’s actions

can generate both nuclear and non-nuclear costs. This new framework better matches the

empirical reality that states face when engaging in crises in the nuclear era.

Second, this paper redefines how conflicts will play out in the nuclear era. Within the

brinkmanship framework, the relationship between resolve and nuclear escalation risk largely

follows what nuclear scholars have described in the past: more resolved actors are take on

more nuclear risks in crises and perform better in these crises. However, we demonstrate

that this relationship arises as an artifact of the overly simplistic cost structure within

the brinkmanship framework. Once states can take actions that generate costs outside of

nuclear escalation risks, more resolved states can engage in strategic behavior that is less

risky. Why does this matter? Any game theoretic model is an exercise in simplification,

but these simplifications should be made for tractability and should not prove decisive for

shaping how players behave. If states can engage in any kind of costly behavior outside of

manipulating nuclear risks—the existence of which is an empirical fact—then the patterns

of behavior described in foundational nuclear deterrence research breaks. We demonstrate

that the equilibrium behavior of resolved states is, generically, more complex than what was
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previously considered, but this behavior still follows predictable patterns that we characterize

here.

Third, the results we present are extremely general, applying to every equilibrium of every

game within the brinkmanship or contest of capabilities framing. A natural concern in

analyzing an equilibrium to a game theory model is whether or not certain features of the

game form are shaping strategic behavior in atypical ways. This is particularly important to

the international relations setting, where there is no clear institutional framework that defines

crisis bargaining behavior between states. We are able to avoid the pitfalls of analyzing a

particular or esoteric game-form by utilizing the tools of mechanism design and conducting a

game-form free analysis of both the brinkmanship and contests of capabilities framings. This

analysis is novel, and the results presented here—through there generality—are also novel.

While results like these exist in individual models like Powell (2015) (for the brinkmanship

framing) and Schram (2024) (for the crisis of capabilities setting), we are the first to establish

their ubiquity across each general class of games and to identify how and why they arise.

And, while this kind of analysis has been applied to crisis bargaining models or to flexible-

response crisis bargaining models in the past (Banks 1990; Fey and Ramsay 2011; Kenkel

and Schram 2024), those analysis cannot speak to settings with a stochastic escalation risk.

We begin the more general analysis in Section 2. In Section 3, we offer a more straightforward

grounding of how the assumptions of the brinkmanship and contests of capabilities framings

produce distinct results.

1 Examples of Brinkmanship and Contest of Capabilities

Games

Before we present our general results, we present examples of games that fall within the

“brinkmanship” and the “contests of capabilities” frameworks. The brinkmanship game ex-
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plored here is a simplified version of the Powell (2015) model.4 The contest of capabilities

game explored here is a slight modification of the brinkmanship model where D is able to

generate costs outside of the nuclear escalation mechanism. Reasonable reviewers may take

issue with some of the modeling choices in the games here. We chose to base these models

on Powell (2015), a recent and well-cited model of nuclear brinkmanship, to give readers

an understanding of how slight changes in that model can upend the equilibrium behav-

ior described there. To summarize what follows, in the brinkmanship game, more-resolved

actors risk nuclear escalation with greater likelihood. However, in a similar the contest of

capabilities game where costs can be generated outside of the nuclear risk mechanism, this

relationship no longer holds. After this analysis of these two games, in the following sections,

we demonstrate that these equilibrium behaviors are not unique to the models explored here,

but rather generic to a broad class of games.

1.1 Simple Brinkmanship Game

Consider a game within the brinkmanship framework, where a challenger (C) and a defender

(D) are in a crisis over an asset. In this game, D is either resolved, placing a high value on

the asset, or less resolved, placing a lower value on the asset. D’s valuation of the asset is

private, meaning that D knows their level of resolve, but C does not observe this. This game

is a simplified version of the private-information game in Powell (2015), and the timing is as

follows:

1. Nature selects D’s private valuation vD ∈ {vD, v̄D}. D is low-resolve (vD) with proba-

bility ζ and high-resolve (v̄D) with probability 1− ζ.

2. D chooses a risk level r ∈ {r, r}, where 0 ≤ r < r ≤ 1.

3. C may quit or challenge. If C quits, the game ends and C receives payoff −kC and D
4These simplifications—like assuming that D can select only low or high levels of risk rather than levels

of risk from a continuum—are done to make the presentation of results cleaner. The equilibrium in Powell
exhibits similar properties to the equilibrium discussed here.
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receives payoff vD − kD, where −kC and −kD can be thought of as crisis costs. If C

challenges, the game continues.

4. In response to C’s challenge, D may quit or fight. If D quits, then C receives vC−kC and

D receives −kD. If D fights, then C and D fight a war that could end conventionally or

with a nuclear exchange. A nuclear war occurs with probability r and players receives

−ni − ki < 0 (with i ∈ {C,D}) in this outcome. If a nuclear war does not occur, then

D wins the asset with probability p, C wins the asset with probability 1− p, and both

players incur the crisis costs −ki.

To reduce the number of possible equilibria, make a series of assumptions. We assume that

if D sets r = r̄ and the game proceeds to stage 4 (i.e. C challenged in stage 3), then low-

resolve D’s prefer quitting to fighting and high-resolve D’s prefer fighting to quitting. We

also assume that if D sets r = r and the game proceeds to stage 4, then both types of D

prefer fighting to quitting. Lastly, we assume that if D sets r = r, then C prefers to challenge,

even if doing so results in a fight.5

With these assumptions in place, a perfect Bayesian equilibrium exists. When C performs

poorly in war, both types of D choose the high-risk level, leading C to consistently quit

(Case A, formally described below). Alternatively, when C attains a high payoff from war,

both types of D choose the low-risk level, C will challenge, and both types of D will fight

(Case B). For a middle-range where C does well-but-not-too-well in war, two Cases exist.

Sometimes both types of D’s will prefer to set the low-risk level and always fight when

challenged (Case C). Other times, a semi-separating equilibrium exists (Case D). In the

semi-separating equilibrium, C will always challenge upon observing the low-risk level and

will only sometimes challenge upon observing the right risk level. High-value D’s will always

choose the high-risk level and will fight when challenged. Low-value D’s will mix between
5All of these assumptions are in place to reduce the number of equilibrium cases; without them, the

relationship between resolve and nuclear risk would still hold in this model, and the results from our general
analysis would still hold.
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the high- and low-risk levels, and will only fight if challenged after selecting the low-risk

level.

We provide a full equilibrium characterization in the Appendix; formally, on-the-path equi-

librium play is the following. We define α = (1−ζ)(r̄nC−(1−r̄)(1−p)vC)
ζvC

and β =
vD−(1−r)pvD+rnD

vD
,

which will be used below.

• Case A: If (1− ζ) ((1− r̄)(1− p)vC − r̄nC) + ζvC ≤ 0, then both types of D set r = r̄

and C always quits.

• Case B: If (1 − r̄)(1 − p)vC − r̄nC > 0, then both types of D set r = r, C always

challenges, and both types of D fight.

• Case C: If (1− ζ) ((1− r̄)(1− p)vC − r̄nC)+ ζvC > 0, (1− r̄)(1− p)vC − r̄nC ≤ 0, and

(1− r)pv̄D − rnD > (1− β)v̄D + β ((1− r̄)pv̄D − r̄nD), then both types of D set r = r,

C always challenges, and both types of D fight.

• Case D: Otherwise, the equilibrium is semi-separating. Type v̄D Ds will always set

r = r̄. Type vD Ds will set r = r̄ with probability α and will set r = r with probability

1 − α. In response to r = r, C will always challenge. In response to r = r̄, C

will challenge with probability β and not challenge with probability 1 − β. When C

challenges after D sets r = r, D will fight. If C challenges after D sets r = r̄, type v̄D

will always fight and type vD will always quit.

Consider the relationship between resolve and nuclear escalation risks. Across these equilib-

rium cases, a common pattern exists: if D has higher resolve, then, in equilibrium, D will

have take on weakly higher levels of nuclear risks. For Cases A, B, and C, both types of D

incur the same level of nuclear escalation risk. For Case D, the Appendix shows that that

low-resolve Ds select a strategy where they face lower nuclear escalation risks than than high-

resolve Ds. In this equilibrium, more resolved actors risk nuclear risks more often, which is

consistent with past non-formal discussions of resolve. And, this result where more resolved
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actors risk nuclear war more often also appears in the Powell (2015) model, where actors

have a richer action set, and in Nalebuff (1986), where actors engage in a continuous-time

war-of-attrition and escalate nuclear risk by staying in the conflict for longer.

However, the model above makes a restrictive assumption: costs are only endogenously gen-

erated through the nuclear risk mechanism. In this simple model, like in Powell (2015),

the defender can only incur costs through the manipulation of nuclear risks. Similarly, in

Nalebuff (1986), actors only incurs costs by remaining in the crisis (which produces greater

nuclear risks).6 While the costs associated with nuclear escalation risks are important to

consider—this modeling technology constitutes a meaningful departure from past formu-

lations of conflict models—they are not the only way conflicts or crises are costly. For

example, in these models, there is no external endogenous cost generated through arming,

fighting conventionally, sanctions, or any other non-nuclear risk related mechanism. What

happens, then, if these costs are included?

1.2 Simple Contests of Capabilities Game

Now consider a modified model where D can generate costs outside of the generation of

nuclear risk within a war. In this new model, to generate the higher levels of nuclear escala-

tion risk, D must pay a sunk cost. This modified model represents a simple depature from

the technology used in the brinkmanship model above and in Nalebuff (1986) and Powell

(2015).7 As we will show, this new nature of costs can reshape equilibrium behavior.8 The

new model is as follows.

1. Nature selects D’s private valuation vD ∈ {vD, v̄D}. D is low-resolve (vD) with proba-
6Nalebuff (1986) describes dropping out as generating a “cost;” however, this “cost” is unavoidable when

giving up the asset, making it a baseline payoff from not attaining the asset—ultimately, the cost from
quitting in Nalebuff (1986) is analogous to the “quit” option and zero-payoff in in Powell (2015).

7What’s unique here is that this cost is realized regardless of whether or not the conflict escalates. In the
brinkmanship model, when war does not occur, there is no realized nuclear escalation risk.

8These sunk costs can have some empirical grounding. For example, if a domestic audience were to
penalize a leader for escalating the risks of nuclear conflict, these costs could manifest in this way.
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bility ζ and high-resolve (v̄D) with probability 1− ζ.

2. D chooses a risk level r ∈ {r, r}, where 0 ≤ r < r ≤ 1.

3. C may quit or challenge. If C quits, the game ends and C receives payoff −kC and

D receives payoff vD − kD − K(r), where −kC and −kD can be thought of as crisis

costs and K(r) are the costs to raising nuclear escalation risks. For ease, we assume

K(r̄) > 0 and K(r) = 0.

4. In response to C’s challenge, D may quit or fight. If D quits, then C receives vC − kC

and D receives −kD − K(r). If D fights, then C and D fight a war that could end

conventionally or with a nuclear exchange. A nuclear war occurs with probability r,

where C receives −nc − kc < 0 and D receives −nD − kD − K(r). If a nuclear war

does not occur, then D wins the asset with probability p, and C wins the asset with

probability 1− p, D incurs costs −kD −K(r), C incurs costs −kC .

We make a similar set of assumptions regarding D’s stage 4 behavior as above and regarding

C’s preference for challenging when r = r. What’s new here is that we assume that low-

resolve Ds and high-resolve Ds differ in their willingness to incur the sunk costs. We assume

that high-resolve Ds prefer selecting the high nuclear escalation level (with high sunk costs)

if this means that they attain the asset without a fight relative to selecting the low nuclear

escalation level (with no sunk costs) and then fighting over the asset. We also assume that

low-resolve types have the opposite preferences: they prefer selecting into the low nuclear

escalation level and fighting over the asset to selecting the high nuclear escalation level and

incurring the high sunk costs, even if it means that they attain the asset.

With these assumptions in place, a perfect Bayesian equilibrium exists. When C performs

poorly in war, both types of D choose the low-risk level, and C consistently quits (Case E).

Alternatively, when C attains a high payoff from war, both types of D choose the low-risk

level, C will challenge, and both types of D will fight (Case F). Finally, for a middle-range
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where C does well-but-not-too-well in war, a fully separating equilibrium exists. In this

equilibrium, high-value D’s will always select the high risk level (r = r̄) and C will not

challenge, and low-value D’s will always select the low risk level r = r and C will always

challenge (Case G). We provide a full equilibrium characterization in the Appendix; formally,

on-the-path equilibrium play is the following.

• Case E: If 0 < (1 − r̄)(1 − p)vC − r̄nC , then both types of D set r = r, C always

challenges, and both types of D fight.

• Case F: Otherwise, there is a separating equilibrium. Type v̄D Ds will always set r = r̄

and C will not challenge. And, type vD Ds will always set r = r, C will challenge, and

D will fight.

Case F represents a new kind of behavior. In that equilibrium case, more resolved Ds are not

running higher nuclear escalation risks—rather, by setting r = r̄ and incurring costs K(r̄),

high resolve Ds have signalled that they are high-resolve, which results in C not challenging

and the crisis ending without any nuclear escalation risks. This is in contrast to low-resolve

Ds, who are not willing to incur the higher costs from setting r = r̄, and will ultimately incur

some escalation risks through fighting. This behavior is distinct from the classic thinking

on brinkmanship, where more resolved actors will run higher nuclear risks. Rather, this

equilibrium better resembles the signalling equilibrium in Schram (2024), which is similar to

signaling equilibria in arming games, where more resolved types are more willing to engage

in costly arming, which signals their type and deters challengers.

The models above are subject to critique; after all, they lack many important elements

of crisis bargaining and deterrence theory, such as bargaining, cheap-talk signaling, or re-

negotiating terms. And, while more sophisticated brinkmanship models (like Nalebuff (1986)

and Powell (2015)) or contest of capabilities models (like Schram (2024)) exist, these models

all (arguably) have their own shortcommings.9 Furthermore, the kind of claims that we are
9For example, none of these models allow for bargaining.
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interested in—when more resolved actors will (or will not) risk nuclear war with greater

likelihood in crises—are sweeping and should exist beyond a single equilibrium of a single

game form. To identify broad regularities in both classes of models, we employ the game-

free methodology of Banks (1990) and Fey and Ramsay (2011), identifying properties that

arise from foundational requirements of equilibrium rather than idiosyncratic features of any

given game tree. We find, in fact, that the intuitive relationship between resolve and war

risk in the brinkmanship game above holds in every equilibrium of every game within the

brinkmanship framework. And, we also find that the counterintuitive relationship between

resolve and war risk in the contests of capabilities game can emerge in a wide range of games

in the contests of capabilities setting.

2 Model Framework

To model contests of capabilities, we extend the formal definition of flexible-response crisis

bargaining games developed by Kenkel and Schram (2024). A contest of capabilities is a

game between a Challenger C and a Defender D, who are in a crisis over a prize whose

value is normalized to 1.10 The two sides bargain over the division of the prize. In the

course of bargaining, each side may take costly low-level actions to influence the outcome

of negotiations. What’s novel here—and not considered in Kenkel and Schram (2024)—is

that D’s low-level action may generate a risk of accidental escalation to full-scale war.11 If C

and D do not agree on a negotiated settlement, then war occurs for certain. D has private

information about its war payoff, which creates a friction that may result in bargaining

failure in equilibrium.
10In section 5 below, we consider an alternative formulation where D’s valuation of the prize is private

information that varies across private types.
11The flexible-response crisis bargaining games studied by Kenkel and Schram (2024) are the special case

of contests of capabilities in which this risk is identically zero.
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2.1 Contests of Capabilities

The timing of a contest of capabilities is as follows. At the start of the game, Nature draws

D’s type θ from a commonly known distribution whose CDF is Fθ and whose support is

Θ ⊆ R. Note that we first characterize type in terms of costs; see section 5 for a treatment

of resolve as valuation. Only D observes Nature’s choice. The two players select bargaining

strategies bC ∈ BC and bD ∈ BD. Our analysis is agnostic as to the shape of the bargaining

protocol. Depending on the particular game form, these strategies might be simple proposals

and responses, as in an ultimatum game, or more complex plans of offers and counteroffers.

Alongside these baseline bargaining strategies, each player may take a costly action that

directly shifts the payoffs from negotiations—and, in D’s case, may generate a heightened

risk of accidental escalation to war. We call C’s action a “transgression” t ∈ T ⊆ R+ and

D’s “hassling” h ∈ H ⊆ R+.

The players’ bargaining strategies determine whether the negotiation succeeds or fails. For

any given game form g, there is a function πg : BC ×BD → [0, 1] that describes the probabil-

ity of agreement (i.e., neither player deliberately choosing war) given the players’ bargaining

strategies. In case of agreement, C pays a cost KC(t) ≥ 0 (increasing in t) for its transgres-

sions, and D pays a potentially type-dependent cost KD(h, θ) ≥ 0 (increasing in h) for its

hassling.12 In this case, the probability of accidental escalation to war is a strictly increasing

function of D’s hassling, denoted R(h) ∈ [0, 1]. We treat the costs of transgression and

hassling, as well as the risk of accidental escalation, as underlying primitive features of the

strategic interaction—not as features of a single particular game form g. If there is no acci-

dental escalation to war, the players receive V g
C (t, h, bC , bD) and V g

D(t, h, bC , bD) respectively.

Unlike the cost and risk functions, these are specific to a game form.
12Because we conceptualize accidental escalation as arising from the coercive instrument itself, we assume

these costs are paid even if accidental escalation occurs. For example, if a conventional war ends in an
accidental nuclear exchange, the conventional war still carries costs (as was similarly formalized in Powell
(2015)). Consequently, both players would prefer deliberate war—avoiding the costs of the low-level actions—
over an agreement with a near-certain chance of accidental escalation.
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Like earlier game-free analyses of crisis bargaining (Fey and Ramsay 2011; Fey and Kenkel

2021; Kenkel and Schram 2024), we assume that both states have the option to unilater-

ally force a conflict. Formally, this amounts to assuming there exists bwar
C ∈ BC such that

πg(bwar
C , bD) = 0 for all bD ∈ BD, as well as an analogous bwar

D ∈ BD. Reflecting the anarchic

nature of international politics, this assumption ensures that neither state can be forced to

accept a settlement that would leave it worse off than fighting.

The players’ baseline war payoffs are solely a function of D’s type, not their bargaining

actions or low-level responses (see section 5 for an alternate treatment). We order the

Defender’s type space so that higher types are more resolved, i.e., the Defender’s baseline

war payoff function WD(θ) is a strictly increasing function of θ. Meanwhile, the Challenger’s

baseline war payoff WC(θ) is a non-increasing function of θ. If war occurs deliberately due

to bargaining failure, then the players receive WC(θ) and WD(θ). If war occurs accidentally

due to hassling-induced escalation, then they receive WC(θ)−KC(t) and WD(θ)−KC(h, θ).

Notice that transgressions and hassling are the only bargaining actions that may affect war

payoffs, and they do so only for accidental escalation and only via the cost functions.

The Challenger’s expected utility, given the bargaining strategies and the Defender’s type,

is given by the function

ug
C(t, h, bC , bD | θ) = πg(bC , bD)︸ ︷︷ ︸

agreement

 no escalation︷ ︸︸ ︷
[1−R(h)]V g

C (t, h, bC , bD)+

accidental escalation︷ ︸︸ ︷
R(h)WC(θ)−KC(t)


+ [1− πg(bC , bD)]︸ ︷︷ ︸

disagreement

WC(θ).

Similarly, the Defender’s expected utility function is

ug
D(t, h, bC , bD | θ) = πg(bC , bD)

[
[1−R(h)]V g

D(t, h, bC , bD) +R(h)WD(θ)−KD(h, θ)
]

+ [1− πg(bC , bD)]WD(θ).
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To close the definition of contests of capabilities, we place some additional assumptions on the

model primitives. First, we assume that either player may refrain from low-level responses

at no cost: 0 ∈ H∩T , KC(0) = 0, and KD(0, θ) = 0 for all θ ∈ Θ. Second, we assume there

is no risk of accidental escalation in the absence of hassling: R(0) = 0. Third, without loss

of generality, we let WD(θ) = θ in the remainder of the analysis.

2.2 Game-Free Analysis

Our goal is to characterize patterns in the equilibria of contests of capabilities that hold

across all game forms with the same underlying primitives, rather than being specific to

a particular bargaining protocol (e.g., ultimatum game, alternating offers, etc.). Table 1

divides the model components into the primitive components and those that are specific to a

particular game form. We will draw conclusions about the equilibrium outcomes of contests

of capabilities solely as a function of the primitive components listed in the left-hand column.

To this end, we adopt the mechanism design methodology of prior game-free analyses of crisis

bargaining (Banks 1990; Fey and Ramsay 2009, 2011; Fey and Kenkel 2021; Liu et al. 2021;

Kenkel and Schram 2024).

Underlying primitives
D’s type space: Θ
War payoffs: WC(·), WD(·)
Low-level responses available: T , H
Cost functions: KC(·), KD(·)
Escalation risk: R(·)

Specific to game form
Bargaining actions: BC , BD

Actions → bargaining success: πg(·)
Actions → prize division: V g

C (·), V
g
D(·)

Table 1: Classification of model components for a contest of capabilities.

As in similar analyses of models with one-sided incomplete information (e.g., Banks 1990;

Fey and Kenkel 2021; Kenkel and Schram 2024), we characterize equilibrium outcomes for

the player with private information, namely the Defender. Let (t∗, h∗(θ), b∗C , b
∗
D(θ)) be an

equilibrium of a game form g, where D’s strategies are written as functions of θ as different

types may take different actions. We summarize the equilibrium via three functions of D’s
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type. The first is the equilibrium probability of agreement for each Defender type:

π(θ) = πg(b∗C , b
∗
D(θ)).

The second is the equilibrium amount of hassling, conditional on an agreement, for each

Defender type:

h(θ) = h∗(θ).

The third is the equilibrium division of spoils going to the Defender, conditional on an

agreement and no accidental escalation to war, for each type:

VD(θ) = V g
D(t

∗, h∗(θ), b∗C , b
∗
D(θ)).

We refer to these three functions (π(·), h(·), VD(·)) jointly as a direct mechanism. Rather

than work with the complex set of all equilibria of all game forms, we will work with the set

of direct mechanisms for contests of capabilities.

Given a direct mechanism, we can calculate the expected utility to each type of Defender as

follows:

UD(θ) = π(θ) [(1−R(h(θ)))VD(θ) +R(h(θ))θ −KD(h(θ), θ)] + (1− π(θ))θ.

Equally importantly, the direct mechanism gives us all we need to know to determine the

payoff one Defender type would receive by deviating to another type’s bargaining strategy.

Consider a Defender whose true type is θ, but who mimics the bargaining strategy of another

type θ′. This type receives the same lottery over agreement versus disagreement (probability

π(θ′) of agreement) and the same risk of accidental war in case of agreement (probability

R(h(θ′))) as the type it is mimicking. Additionally, if there is agreement and no accidental

war, the mimicking type receives the same bargaining spoils, VD(θ
′). But there are two key
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differences between the mimic’s payoff and UD(θ
′). First, in case of war (whether accidental

or deliberate), the mimic receives its true private value θ—it does not become stronger or

weaker on the battlefield just by adopting the bargaining strategy of a different type. Second,

in case of agreement, the type-dependent component of the mimic’s hassling cost reflects its

true type; i.e., the mimic pays KD(h(θ
′), θ). Altogether, then, the expected utility to type θ

for adopting the bargaining strategy of type θ′ is

ΦD(θ
′ | θ) = π(θ′) [(1−R(h(θ′)))VD(θ

′) +R(h(θ′))θ −KD(h(θ
′), θ)] + (1− π(θ′))θ.

A direct mechanism is incentive compatible if no Defender type would strictly benefit from

mimicking the bargaining strategy of a different type. Formally, the incentive compatibility

condition is

UD(θ) ≥ ΦD(θ
′ | θ) for all θ, θ′ ∈ Θ. (IC)

The incentive compatibility condition is closely related to the equilibrium requirements of

Bayesian games. Our game-free analysis depends critically on the revelation principle artic-

ulated by Myerson (1979): for every Bayesian Nash equilibrium of a Bayesian game, there

exists a payoff-equivalent direct mechanism that is incentive compatible. Therefore, if some

claim holds for all incentive compatible direct mechanisms for contests of capabilities, then

the same claim is true for all equilibria of such contests. By analyzing the set of incentive

compatible direct mechanisms, we can derive necessary conditions for equilibrium behavior

without having to solve any specific game form.

In line with Fey and Ramsay (2011) and the subsequent mechanism design literature, we

also impose a voluntary agreements condition—what economists would call a participation

or individual rationality constraint—on the set of direct mechanisms we consider. Voluntary

agreements holds when no Defender type is worse off than it would be from deliberately
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fighting:

π(θ) [(1−R(h(θ)))VD(θ) +R(h(θ))θ −KD(h(θ), θ)] ≥ π(θ)θ for all θ ∈ Θ. (VA)

Formally, voluntary agreements is a consequence of our assumption that both players have

a bargaining action available that guarantees war. Substantively, this condition reflects

the anarchic state of international politics, in which all agreements must be self-enforcing.

Voluntary agreements hold trivially for any type that deliberately chooses war for certain,

i.e., for which π(θ) = 0. Additionally, if we have π(θ) = 0 for at least one Defender type,

then incentive compatibility implies voluntary agreements.

3 Brinkmanship Contests

We conceptualize a contest of nerves as a special case of a contest of capabilities, in which all

Defender types have the same access to an instrument that generates exogenous escalation

risks. In brinkmanship, Defender types may vary in their resolve—their expected value of

fighting, and thus their willingness to risk war in order to receive a particular settlement

at the bargaining table—but no type has an advantage over any other at pulling the levers

that generate risk. In its simplest form, the risk of accidental war can be thought of as

a pure brinkmanship measure, akin to rocking the boat in Schelling (1966, 90-91). This

pure brinkmanship dynamic is formalized in models like Nalebuff (1986), Powell (1988), and

Powell (1990).13 Additionally, the brinkmanship framing can also describe settings where

lower-levels actions may be inefficient, so long that these inefficiencies are uncorrelated with

private type. Also, as discussed in section 5, this framework closely relates to the model in

Powell (2015).
13Our framing differs from these models in our treatment of “resolve,” which only depends on D’s escalated

war payoff. For example, in Powell (1988), resolve is a function of war payoffs, the payoffs from prevailing
in the crisis, and the payoffs from conceding in the crisis; we choose a simpler treatment of resolve that does
not rely on factors like the payoffs from dropping out of a crisis, which, in the bargaining setting, may be
endogenous to the Defender’s war payoff.
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Formally, we define a contest of nerves as one in which the cost of each feasible low-level

choice is constant across Defender types. In a contest of nerves, there exists a non-decreasing

function κD : H → R+ such that

KD(h, θ) = κD(h) for all h ∈ H and θ ∈ Θ.

This includes as a special case “pure brinkmanship” scenarios, in which all types can generate

accidental war risk costlessly: κD(h) = 0 for all h ∈ H (like in Nalebuff (1986) and Powell

(1988). When the Defender’s private information is about its war payoff, the distinction

between the pure brinkmanship model and the contest of nerves turns out to be essentially

immaterial.14

Brinkmanship contests exhibit essentially the same patterns of behavior as in ordinary crisis

bargaining games, where there are no low-level policy alternatives between peaceful settle-

ment and all-out war. When accounting for both of the possible paths to conflict—deliberate

war or accidental escalation—more resolved types of the Defender are more likely to end up

at war in equilibrium. Additionally, more resolved types have higher equilibrium payoffs.

The following proposition states these claims formally as properties of incentive compatible

direct mechanisms for brinkmanship.15

Proposition 1. In any equilibrium of a contest of nerves, the total probability of war and the

Defender’s equilibrium utility weakly increase with the Defender’s resolve: if θ′ < θ′′, then

π(θ′)[1−R(h(θ′))] ≥ π(θ′′)[1−R(h(θ′′))] and U(θ′) ≤ U(θ′′).

Proposition 1 holds because brinkmanship contests are, in fact, equivalent to ordinary crisis

bargaining games at a deep level. Because the cost of the low-level option does not differ
14The same is not necessarily true when the Defender’s private information concerns its prize valuation;

see section 5 below.
15All proofs appear in Appendix C.
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across types, any type that mimics the bargaining strategy of θ′ receives exactly the same

payoff in case of a peaceful outcome, namely VD(θ
′)− κD(h(θ

′)). This equivalence of settle-

ment payoffs across types means that the monotonicity results from Banks (1990) apply to

brinkmanship contests, so higher types of the Defender are more likely to go to war and have

greater equilibrium expected utilities. By contrast, in the more general class of contests of

capabilities that we study below, different Defender types might yield different payoffs from

the same bargaining strategy, even conditional on the interaction ending peacefully. That is

because the costs of the low-level policy may differ across types, leading to different overall

settlement values under which the Banks (1990) results no longer apply (see Kenkel and

Schram 2024).

When full-scale war is sufficiently destructive, such as a nuclear exchange would be, it is

plausible to suppose neither side would ever deliberately initiate a conflict (Brodie 1966;

Schelling 1966; Powell 1990). In this case, we can obtain even stronger results about the

relationship between the Defender’s private resolve and equilibrium choices. Specifically,

more resolved types engage in more brinkmanship and receive more favorable settlements at

the bargaining table when the game ends peacefully.

Corollary 1. In any equilibrium of a contest of nerves, if war never occurs deliberately

(π(θ) = 1 for all θ), then the probability of accidental war and the Defender’s settlement

value weakly increase with the Defender’s resolve: if θ′ < θ′′, then R(h(θ′)) ≤ R(h(θ′′)) and

VD(θ
′) ≤ VD(θ

′′).

Altogether, in a contest of nerves in which no Defender type has a particular advantage

or disadvantage at generating accidental war risk, outcomes are determined by resolve in a

predictable way. Greater resolve implies a greater total risk of war, including a greater risk of

accidental war when neither player would ever deliberately opt into conflict. But as we show

below, this stark pattern does not necessarily hold in more general contests of capabilities,
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where we consider accidental war risk a byproduct of low-level policy responses whose cost

or effectiveness is related to the Defender’s resolve.

4 Contests of Capabilities

In the contest of capabilities framework, the Defender’s private willingness to go to war is

related to their ability or willingness to use limited instruments. This creates a potential new

tradeoff that affects the Defender’s equilibrium choices. Types may vary in their preferences

for lower-level conflict not only due to the risk of full-scale war that these options generate,

but also because of differences in their direct costs for using these instruments. Consequently,

even when full-scale war never occurs on purpose, it is no longer certain that more resolved

types take on a higher risk of accidental conflict.

Throughout this section, we restrict attention to direct mechanisms in which each Defender

type is either certain to agree or certain to go to full-scale war: π(θ) ∈ {0, 1} for all θ ∈ Θ.

This set of mechanisms corresponds to pure-strategy equilibria of contests of capabilities in

which Nature’s only moves are the initial assignment of the Defender’s type and the risk

of war R(h) generated by the Defender’s low-level policy choice (see Fey and Kenkel 2021).

Given such a mechanism, we can partition the type space into those that reach agreement

(with possible risk of accidental conflict) and those that deliberately fight a war: Θ = Θ1∪Θ0,

where Θ1 = {θ ∈ Θ | π(θ) = 1} and Θ0 = {θ ∈ Θ | π(θ) = 0}. We relax this assumption,

allowing for equilibria in which some Defender types mix, in subsection 4.3 below.

4.1 Probability of Accidental War

Unlike in the special case of the contest of nerves analyzed above, the probability of accidental

war need not increase with the Defender’s resolve in a contest of capabilities. To see why,

consider the tradeoff between low and high hassling, and how it varies with the Defender’s

resolve. First, there will be a difference in the Defender’s settlement value if accidental war
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does not occur.16 The Defender’s resolve is immaterial to the value of this difference. Second,

higher hassling generates a greater risk of accidental conflict. This is the effect at the root

of Corollary 1 above, leading more resolved types to be more tolerant of greater hassling.

But now there is a third component to the tradeoff: the marginal cost of the higher value of

hassling may differ with the Defender’s resolve. In practical terms, some Defenders may be

more or less willing to conduct low-level competition depending on their high-level resolve;

for example, if a Defender is more hawkish and willing to risk a nuclear exchange, then

this Defender could plausibly also be more willing to absorb the costs from a more expansive

conventional conflict. Naturally, we cannot characterize the relationship between resolve and

equilibrium behavior without accounting for these marginal costs—and how they compare

to the increase in the risk of accidental war.

If the marginal cost of hassling decreases with the Defender’s resolve, then it is straightfor-

ward to see that more resolved types will run a greater risk of accidental war. In this case,

compared to a less resolved Defender, a more resolved type gets the same benefit in case the

agreement holds, is better off in case accidental war occurs, and pays less to go from low

hassling to high hassling.

If instead more resolved Defender types face higher marginal costs of hassling (e.g., because

investments in capabilities for total war crowd out the resources for lower-level instruments),

then the tradeoff is harder to resolve. More resolved types are still better able to handle the

risk of accidental war, but now they must pay more to demonstrate this resolve through low-

level conflict. Ultimately, equilibrium behavior here comes down to the relative magnitude of

(a) the effect of Defender resolve on the marginal cost of hassling and (b) the effect of hassling

on the risk of accidental war. If the increase in the low-level instrument does not generate

much risk, then we see the opposite pattern from the war of nerves, with more resolved

Defenders investing less in low-level conflict and thus facing lower odds of accidental war.
16Intuitively, one might expect more hassling to yield more favorable terms. In fact, additional assumptions

are required to guarantee this is the case. See Kenkel and Schram (2024).
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The following proposition states sufficient conditions for the equilibrium probability of acci-

dental war to increase or decrease with the Defender’s resolve among all types that reach an

agreement. The left-hand side of the equations in the proposition is, in essence, the effect of

resolve on the marginal cost of greater hassling. The right-hand side is the effect of greater

hassling on the risk of accidental conflict, weighted by the difference in war payoff between

the more resolved and the less resolved type.

Proposition 2. Consider an equilibrium of a contest of capabilities.

(a) The probability of accidental war weakly increases with the Defender’s resolve if

[KD(h
′′, θ′′)−KD(h

′, θ′′)]− [KD(h
′′, θ′)−KD(h

′, θ′)] < [R(h′′)−R(h′)](θ′′ − θ′) (1)

for all h′, h′′ ∈ h(Θ1) and θ′, θ′′ ∈ Θ1 such that h′ < h′′ and θ′ < θ′′.

(b) The probability of accidental war weakly decreases with the Defender’s resolve if

[KD(h
′′, θ′′)−KD(h

′, θ′′)]− [KD(h
′′, θ′)−KD(h

′, θ′)] > [R(h′′)−R(h′)](θ′′ − θ′) (2)

for all h′, h′′ ∈ h(Θ1) and θ′, θ′′ ∈ Θ1 such that h′ < h′′ and θ′ < θ′′.

Equation 1 and Equation 2 are closely related to the single-crossing conditions that often arise

in mechanism design and related economic settings (Milgrom and Shannon 1994; Ashworth

and Bueno de Mesquita 2006). If KD has global decreasing differences—i.e., the increase

in cost between any two levels of hassling is always smaller for more resolved types—then

Equation 1 must hold, and the probability of accidental war must behave as it does in a

contest of nerves. On the other hand, if KD has global increasing differences, then accidental

war risks may still increase with resolve; a slim increase in marginal costs with θ is not enough
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to make Equation 2 hold.17

The key takeaway from Proposition 2 is that the direction of the relationship between resolve

and accidental war depends on how resolve affects the marginal cost of hassling versus how

hassling affects the risk. Can we say anything stronger about the shape of this relationship,

such as how quickly the level of low-level activity varies with the Defender’s resolve? Our

next result, Proposition 3, answers this question in the negative. As long we can satisfy

the conditions on marginal effects set out in the previous proposition, we can design a game

form to rationalize virtually any pattern of hassling.

To obtain the following result, we must impose slightly stronger technical conditions than

in the baseline analysis. We assume a continuous type space, Θ = [θ, θ], and set of feasible

low-level actions, H = [0, h]. We also assume that R is continuously differentiable and that

KD is twice differentiable. Together we refer to these as the differentiability assumptions.

Proposition 3. Suppose the differentiability assumptions hold.

(a) Let h∗ be any absolutely continuous, weakly increasing function that satisfies

∂2KD(h, θ)

∂h∂θ
≤ R′(h) for all h ∈ h∗(Θ), θ ∈ Θ.

There is an incentive compatible direct mechanism in which π(θ) = 1 and h(θ) = h∗(θ)

for all θ ∈ Θ.

(b) Let h∗∗ be any absolutely continuous, weakly decreasing function that satisfies

∂2KD(h, θ)

∂h∂θ
≥ R′(h) for all h ∈ h∗∗(Θ), θ ∈ Θ.

17KD need not have global increasing or decreasing differences. For example, consider the type space
Θ = [0, 1], hassling space h = {0, 1, 2}, and cost function KD(0, θ) = 0, KD(1, θ) = a+ bθ (where 0 < a < 1
and 0 < b < 1 − a), KD(2, θ) = 1. This function has increasing differences on {0, 1}, decreasing differences
on {1, 2}, and constant differences on {0, 2}. Consequently, if the effect of hassling on the risk of accidental
war is strong enough, there may simultaneously exist IC mechanisms with increasing hassling (on {1, 2})
and decreasing hassling (on {0, 1}).

24



There is an incentive compatible direct mechanism in which π(θ) = 1 and h(θ) = h∗∗(θ)

for all θ ∈ Θ.

Though the formal statement is technical, this is a remarkable result. Proposition 3 tells us

that the primitive features of the strategic environment—i.e., the players’ types, the low-level

actions available, the costs of those actions, and the risk of accidental war they generate—

only determine whether the equilibrium degree of hassling (and accidental war) increases or

decreases with the Defender’s resolve. The precise magnitude of the increase or decrease

may be quite specific to a particular bargaining game form. For example, suppose that KD

has global decreasing differences (more resolved types face lower marginal costs of hassling),

so that ∂2KD(h,θ)
∂h∂θ

< 0 for all h and θ. Then Proposition 3(a) implies that every increasing

function h∗(θ) (subject to a continuity restriction) can be supported as equilibrium behavior.

Whether there is a gradual increase, a sudden large spike, or no change at all depends only on

the contingent features of the bargaining game, not on the underlying military fundamentals.

4.2 Occurrence of Deliberate War

We now consider how the choice of deliberate war varies with the Defender’s resolve. By

definition, the payoff from war is greater for more resolved types, increasing their incentive

to opt for war. In the absence of low-level alternatives, this incentive results in a monotone

increasing relationship between resolve and deliberate war (Banks 1990). However, in a more

general setting, the effect of resolve on deliberate war depends on its relationship with the

cost of low-level policy options. In particular, if more resolved types can also use low-level

conflict more cheaply or effectively, then they may opt for limited conflict instead of war

(Kenkel and Schram 2024).

While the relationship between resolve and hassling costs is important, the risk of accidental

war from limited conflict also plays a role in the decision to fight war deliberately. If a limited

policy instrument generates only an infinitesimal risk of accidental war, then the types with
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the most incentive to opt for it will be whichever ones have the lowest costs for that level of

hassling. At the other extreme, if limited conflict carries an enormous risk of escalation, then

resolve rather than costs will be the determining factor in the preference of each Defender

type.

The following proposition summarizes the relationship between Defender resolve and the

occurrence of deliberate war in the equilibria of contests of capabilities. If more resolved

types pay higher (absolute) costs for low-level policy options, then less-resolved types settle

and more-resolved types fight. However, when greater resolve also entails greater willingness

or capability to hassle, then we must compare the magnitude of the cost effect to the degree

of accidental war risk. If resolve only slightly reduces the hassling costs, or if the risk of

accidental escalation is low, then we still have less-resolved types agreeing and more-resolved

types fighting. But we yield the opposite pattern if hassling costs plunge quickly with θ or

if escalation risks are high.

Proposition 4. Consider an equilibrium of a contest of capabilities. Let Θ1 denote the set

of types that reach an agreement in equilibrium: Θ1 ≡ {θ ∈ Θ | π(θ) = 1}.

(a) Less-resolved Defender types reach agreement and more-resolved types deliberately choose

war (i.e., closΘ1 = {θ ∈ Θ | θ ≤ θ̂} for some θ̂) if

KD(h
′, θ′)−KD(h

′, θ′′)

θ′′ − θ′
< 1−R(h′) (3)

for all h′ ∈ h(Θ1) and all θ′, θ′′ ∈ Θ such that θ′ < θ′′.

(b) Less-resolved Defender types deliberately choose war and more-resolved types reach

agreement (i.e., closΘ1 = {θ ∈ Θ | θ ≥ θ̂} for some θ̂) if

KD(h
′, θ′)−KD(h

′, θ′′)

θ′′ − θ′
> 1−R(h′) (4)
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for all h′ ∈ h(Θ1) and all θ′, θ′′ ∈ Θ such that θ′ < θ′′.

We briefly note the technical similarities and differences between Proposition 2 (conditions for

the probability of accidental war to be monotone in the Defender’s resolve) and Proposition 4.

Both results work with differences in the cost function, KD(·, θ′′) − KD(·, θ′), as well as in

war payoffs, θ′′ − θ′. Additionally, the risk of accidental war plays a role in both results.

The probability of accidental war characterized in Proposition 2 is ultimately determined

by a second-order comparison: the effect of Defender type on the marginal cost of hassling,

compared to the marginal effect of hassling on escalation risk. By contrast, the occurrence of

deliberate war characterized here in Proposition 4 depends more on first-order comparisons:

the effect of Defender type on the absolute cost of hassling, versus the absolute level of

escalation risk.

4.3 Probabilistic Deliberate War

Our baseline analysis concerns equilibria in which every Defender type either reaches agree-

ment for certain or fights a deliberate war for certain. In such equilibria, the Defender can

generate a limited risk of war only through choosing a corresponding level of hassling, not

through mixed strategies. We now relax this restriction to consider equilibria in which we

may have π(θ) ∈ (0, 1) for some (or all) types of the Defender.

When we allow for a probabilistic occurrence of deliberate war, we find exceptions to some

of the patterns characterized in our baseline analysis. For example, consider an environment

in which the effect of resolve on hassling cost is negative (Equation 3 holds), and this effect

becomes larger in magnitude at higher degrees of hassling (Equation 1 holds). Under these

conditions, Proposition 2 would lead us to conclude that the probability of accidental war

increases with the Defender’s resolve, and we would infer from Proposition 4 that the same is

true for the occurrence of deliberate war. However, these patterns are specific to equilibria in

which the probability of deliberate war is exactly 0 or 1 for each Defender type. Proposition 5
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below shows that the probability of accidental escalation may decrease with Defender resolve

when the probability of deliberate war is locally increasing. Alternatively, if the probability

of accidental escalation increases quickly enough, then the probability of deliberate war may

decrease with Defender resolve.

For ease of characterization, we impose linearity assumptions that are even stronger than the

differentiability assumptions of Proposition 3 above. We assume Θ = [θ, θ] and H = [0, 1].18

Additionally, we assume the cost function and risk function are linear in hassling: there exist

a function k : Θ → R++ and a constant r > 0 such that KD(h, θ) = k(θ)h and R(h) = rh

for all θ ∈ Θ and h ∈ H. We also assume k is differentiable, and we denote k ≡ min k′(Θ)

and k ≡ max k′(Θ).

Proposition 5. Suppose the linearity assumptions hold and r − 1 < k ≤ k < r.

(a) Equation 1 and Equation 3 hold.

(b) Let π∗ be any absolutely continuous, weakly decreasing function such that π∗(θ) > 0 for

all θ ∈ Θ, and let h∗ be any absolutely continuous function that satisfies

dh∗(θ)

dθ
≥

1
r−k

− h∗(θ)

π∗(θ)
· dπ

∗(θ)

dθ

for all θ ∈ Θ at which h∗ and π∗ are differentiable. There is an incentive compatible

direct mechanism in which π(θ) = π∗(θ) and h(θ) = h∗(θ) for all θ ∈ Θ.

(c) Let π∗∗ be any absolutely continuous, weakly increasing function such that π∗∗(θ) > 0

for all θ ∈ Θ, and let h∗∗ be any absolutely continuous function that satisfies

dh∗∗(θ)

dθ
≥

1
r−k

− h∗∗(θ)

π∗∗(θ)
· dπ

∗∗(θ)

dθ

18Because the cost function and war payoff space are arbitary in magnitude, the normalization h = 1 is
without loss of generality.
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for all θ ∈ Θ at which h∗∗ and π∗∗ are differentiable. There is an incentive compatible

direct mechanism in which π(θ) = π∗∗(θ) and h(θ) = h∗∗(θ) for all θ ∈ Θ.

Though it is important to understand these baseline exceptions to the patterns characterized

in our main analysis, the takeaway here should not be that anything can happen. In sub-

stantively important contexts such as nuclear war where it is implausible that the Defender

would ever deliberately opt for war, we cannot obtain these exceptions to Proposition 2.

Additionally, the result here depends on the cost effect being in a tight range where it is

small in magnitude. A larger negative or positive relationship between resolve and hassling

cost would tighten the set of patterns that can be sustained in equilibrium.

5 Resolve as Prize Value

The analysis above considers a class of models that treat the Defender’s resolve as their

war payoff. Here, we consider an alternate formulation, more in line with recent nuclear

brinkmanship models (e.g., Powell 2015; Schram 2024), in which the Defender’s private

resolve is represented by their value for the object at stake in the crisis. We are able to

show that this alternate formulation can share similarities with the contest of capabilities

framework, but, with some new model primitives (i.e. a option to quit and zero out), can

also introduce new “outbidding” behavior.

To motivate the analysis, consider a simple model of brinkmanship based on Powell (2015).19

C and D are in a crisis over a prize worth βC > 0 to C and βD > 0 to D. The prize is initially

controlled by D. C’s prize valuation is common knowledge, while D’s is private information
19There are three differences between the model here and that of Powell (2015). First, we rule out C’s

initial option to end the game immediately by accepting the status quo. Any equilibrium in which this occurs
involves no choices by D along the path of play, resulting in a trivial direct mechanism for our purposes.
The second, related difference is that we normalize the costs kC and kD to zero, as both are sunk (and thus
decision-irrelevant) once C opts not to accept the status quo. Third, we assume there is no baseline latent
risk, i.e., r(p) = 0 for all p. Our framework could be modified to incorporate non-zero baseline risk at the
cost of some additional notation; we omit this possibility here for clarity of exposition.
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only known to D. The timing of the game is as follows:

1. Nature selects D’s valuation βD and reveals it to D.

2. C chooses a conventional arms level p ∈ [p, p].

3. D chooses a risk level r ∈ [0, r(p)], where r(p) ∈ (0, 1) for each p ∈ [p, p].

4. C may quit or continue with the challenge. If C quits, then C receives nothing and D

receives the full prize.

5. If C continued with the challenge, D may quit or fight. If D quits, then C receives

and full prize and D receives nothing. If instead D fights, then with probability r a

nuclear war occurs and each player receives −ni < 0. Otherwise, C wins the prize with

probability p and D wins it with probability 1− p.

Figure 1 displays the game tree for this model of nuclear brinkmanship.

The baseline framework in section 2 captures some key features of this model, in particular

an unintentional risk of nuclear escalation. However, there are also some key differences. The

most visible is that D’s type now represents their prize valuation instead of their war payoff.

Additionally, even after D moves to generate a certain level of endogenous risk, either player

may “shut off” that risk by conceding the issue. In this section, we consider a generalized

framework that captures the features of the model in Figure 1. We show that the payoff

structure in this new framework is essentially isomorphic to a special case in our original

contest of capabilities, but that the possibility of shutting off the risk may generate distinct

patterns in equilibrium outcomes. Nonetheless, certain outcome patterns can still arise only

when risk is generated by a costly political process for D, rather than a costless lever as in

the contest of nerves.
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C

Arms: p ∈ [p, p]

D

Risk: r ∈ [0, r(p)]

C

0
βD

Quit Challenge

D

βC

0

Quit

(1− r)pβC − rnC

(1− r)(1− p)βD − rnD

Fight

Figure 1: Game tree for the motivating model where the Defender’s type represents their
war payoff (based on Powell 2015).
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5.1 Direct mechanism

We consider a class of models with the same choice structure as in our baseline framework

(introduced in section 2): C and D each choose bargaining actions, including low-level re-

sponses, which determine the distribution of spoils and the risk of war. The primitives differ

from the baseline model in the following way:

• The war payoffs are fixed values −nC ,−nD < 0.

• The value of the prize for D is a private type, βD ∈ [β
D
, βD].

• The hassling cost function, which we now denote κD(h), is a function solely of hassling

and not of D’s type.

The change in the prize payoff structure necessitates a different definition of the direct

mechanism than in our baseline analysis. We now model the share of the prize received

by each type of D, via a function SD : [β
D
, βD] → [0, 1]. This may represent a share of

the prize garnered from negotiations, or from conventional conflict as in the Powell (2015)

model. Additionally, mirroring Powell (2015), we allow for the possibility that a state might

“quit,” ceding the prize to the other while zeroing out the risk of accidental war.20 We include

functions QC , QD : [β
D
, βD] → {0, 1} to capture these quitting outcomes. For simplicity in

the exposition, we restrict QC(βD)+QD(βD) ≤ 1; i.e., both states cannot simultaneously quit.

To avoid trivialities, we restrict attention to mechanisms in which QC(βD) = QD(βD) = 0

implies SD(βD) ∈ (0, 1); i.e., we consider a state to have “quit” if it accepts a settlement

with no value. Finally, the assumption of strictly negative war payoffs implies that neither

side would start a nuclear war deliberately rather than quit, so we do not incorporate this

possibility into the mechanism.

The direct mechanism dictates the payoff to D type βD of reporting type β′
D. To save space

in writing out the reporting function, let S̄D(βD) denote the final share received by each type
20We cannot fully capture this simply by setting h(βD) = 0 when a player quits, as D may incur costs of

hassling prior to either side quitting.
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of D, accounting for either state quitting:

S̄D(βD) ≡ QC(βD) + [1−QC(βD)−QD(βD)]SD(βD).

This gives us a reporting function of

ΨD(β
′
D | βD) = S̄D(β

′
D)βD −R(h(β′

D))nD − κD(h(β
′
D)).

[Need to look into the proofs and see whether quitting actually zeroes out the autonomous

risk, because this specification of the reporting function makes it look like the autonomous

risk stays no matter what]

5.1.1 Application to motivating model

Let us return to the variant of the Powell (2015) brinkmanship model portrayed in Figure 1

above. A pure strategy equilibrium of the game consists of the following quantities and

functions. C selects an arms level p∗. Each type of D responds to each possible arms level

p with a risk level r∗(p | βD). C decides whether to quit after observing arms and risk; let

q∗C(p, r) ∈ {0, 1} be an indicator for C’s choice to quit. Finally, if C does not quit, then each

type of D chooses whether to do so, denoted q∗D(p, r | βD) ∈ {0, 1}.

To adapt this model to our framework, we identify the “hassling” choice as D’s selected level

of risk. The hassling space is thus H = [0, r̄(p̄)], with associated risk function R(h) = h and

cost function κD(h) = 0 (constant). Then given any equilibrium of the game, we can define

an equivalent direct mechanism as follows:

• Hassling level: Set h(βD) = r∗(p∗ | βD) for all βD.

• C quit: Set QC(βD) = q∗C(p
∗, r∗(p∗ | βD)) for all βD.
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• D quit: Set

QD(βD) = [1− q∗C(p
∗, r∗(p∗ | βD))]q

∗
D(p

∗, r∗(p∗ | βD) | βD)

for all βD.

• Share of prize if neither quit: Set SD(βD) = 1− p∗ (constant) for all βD.

5.1.2 Incentive compatibility and participation constraints

As in the baseline analysis, any direct mechanism corresponding to an equilibrium must

satisfy the incentive compatibility condition,

ΨD(βD | βD) ≥ ΨD(β
′
D | βD) for all βD, β

′
D ∈ [β

D
, βD].

In the context of nuclear conflict, a direct mechanism may be incentive compatible yet sub-

stantively unlikely. For example, consider a direct mechanism in which QC(βD) = QD(βD) =

SD(βD) = 0 and h(βD) = h for all βD, where R(h) ≈ 1. This trivially satisfies incentive

compatibility, but seems unlikely to describe real-world crisis bargaining, as every type of D

risks a near-certain nuclear war in order to attain none of the disputed good.

To rule out this sort of implausible equilibrium outcome, we only consider direct mechanisms

that satisfy “participation” constraints ensuring that each state prefers the equilibrium over

quitting (and, in D’s case, not hassling). For D, the participation constraint amounts to each

type garnering non-negative expected utility:

ΨD(βD | βD) ≥ 0 for all βD. (IR-D)

It is more complicated to define a participation constraint for C, as the information C has

when they decide to quit may vary across game forms. The weakest plausible participation

34



constraint for C is an ex ante constraint of non-negative expected utility:

E
[
S̄C(βD)βC −R(h(βD))nC

]
≥ 0, (IR-C)

where the expectation is taken over the prior distribution of βD and S̄C is defined analogously

to S̄D. At the other extreme is an ex post condition, stating that C yields non-negative

expected utility for all type realizations of D:

S̄C(βD)βC −R(h(βD))nC ≥ 0 for all βD. (IR-C′)

5.2 General results

In one sense, reformulating the type space as the prize value rather than as D’s war payoff

does not change its essential structure or features. Having a higher prize value is akin to

having lower war costs or hassling costs, in that it increases D’s willingness to run risks in

order to achieve a better result at the negotiating table. On its own, then, this reformulation

of the type space should not radically change the results of the analysis.

To justify this claim more formally, we can examine the structure of D’s payoff function

under the modified direct mechanism. A key property of Von Neumann-Morgenstern utility

functions is the invariance to affine transformations. If we divide the reporting function

Ψ(· | βD) by the prize value βD, we end up with a payoff function that looks akin to the one

from our baseline model:

Ψ(β′
D | βD)

βD

= S̄D(β
′
D)︸ ︷︷ ︸

VD(θ)

−R(h(β′
D))

nD

βD︸︷︷︸
θ

− κD(h(β
′
D))

βD︸ ︷︷ ︸
K(h,θ)

.

The payoff structure thus should not cause any substantive difference from our baseline

contest of capabilities model. This logic is the basis of the next proposition, which states
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that any equilibrium of the modified model in which neither state quits has an equivalent

representation in our original framework.

Proposition 6. In the model where D’s type is prize value, if QC(βD) = QD(βD) = 0 for

all βD, then the direct mechanism is isomorphic to a contest of capabilities in the baseline

framework in which Equation 1 is satisfied. If additionally κD(h(βD)) = 0 for all βD, then

it is isomorphic to a contest of nerves.

An equilibrium of the prize-value model in which neither state ever quits is, in this sense,

equivalent to a contest of capabilities that satisfies the decreasing differences condition,

Equation 1. Because D would never deliberately provoke war per our assumption that

−nD < 0, Proposition 2 then implies that the hassling level and the probability of accidental

war weakly increase with D’s prize value. Moreover, if risk is generated without any direct

cost to D, as in the example model based on Powell (2015), then Proposition 1 and Corollary 1

imply that D’s expected utility and settlement value also increase with βD. From this

standpoint, modeling resolve as prize value simply leads to a special (and in fact relatively

restrictive) case of the contest of capabilities.

However, Proposition 6 only covers the case in which neither player quits in equilibrium.

This rules out certain strategic behaviors related to brinkmanship, where D is prepared

to run a high risk of nuclear disaster that is not ultimately realized on the path of play

because C would find it intolerable. Once we allow for the possibility of quitting, we obtain

a pattern of results that is potentially distinct from the contest of capabilities. Low types

of D quit, incurring no costs while receiving nothing. Medium types do not quit but also

do not induce C to quit, so any risks they generate are realized on the path of play. The

highest types prepare to run a high enough risk—at a strictly greater cost than all low and

medium types—to induce C to quit. Essentially, D here can “outbid” C’s tolerance for risk,

resulting D attaining the prize.
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Proposition 7. In the model where D’s type is prize value, there exist β̃, β̂ ∈ [β
D
, βD] such

that:

(a) For all βD < β̃, QD(βD) = 1 and κD(h(βD)) = 0.

(b) For all βD ∈ (β̃, β̂), QC(βD) = QD(βD) = 0. h(βD) and SD(βD) are weakly increasing

on this interval of types.

(c) For all βD > β̂, QC(βD) = 1. There exists κ̂ such that κD(h(βD)) < κ̂ for all βD < β̂

and κD(h(βD)) = κ̂ for all βD > β̂.

In the general setting where type is prize value and the players have the option to quit,

we have a nonmonotone (∩-shaped) probability of accidental war as a function of D’s type.

This is true even though we saw above that the model effectively satisfies the decreasing

differences condition (Equation 1), which in our baseline model implied a non-decreasing

probability of accidental war among types that do not start a war deliberately.

The nonmonotonicity of the chance of nuclear accidents is a key feature of the model in

Schram (2024). But Proposition 7 also shows how it cannot arise in models like our example

based on Powell (2015), in which D can generate nuclear risk costlessly. Part (c) of the

proposition states that the cost incurred by types that induce C to quit must be strictly

greater than the costs incurred by types that quit or settle in equilibrium. This cannot

happen in a model with costless risk generation—unless all types of D induce C to quit,

in which case the probability of accidental war is constant rather than nonmonotone. The

upshot is that the nature of the process that generates nuclear risk continues to matter even

when we consider a different conceptualization of resolve and allow states to zero out risk

by “quitting.” Key relationships between resolve and the risk of nuclear accidents arise only

when risk is generated by low-level policy options whose attractiveness or capability varies

across Defender types.
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6 Conclusion

We analyze a class of crisis bargaining models in which states may employ limited policy

options short of full-scale war that nonetheless generate a risk of accidentally triggering such

a war. Using a mechanism design methodology that allows us to study all equilibria of all

such games, we find that their outcomes critically depend on the relationship between a

state’s private resolve and its willingness and/or ability to use these limited policy instru-

ments. If there is no relationship—i.e., if a state’s access to limited conflict is independent

of its willingness to engage in full-scale war—then we recover the traditional brinkmanship

pattern in which more resolved states engage in more risky limited conflict. However, when

the marginal cost of riskier limited policies increases quickly enough with a state’s resolve,

there are equilibria with the opposite pattern, in which the least resolved types are the

most likely to experience accidental escalation. Depending on the technology of limited

conflict and its relationship with a state’s war payoffs, different bargaining games may lead

to completely different patterns of accidental war, even with the same underlying military

fundamentals. Our results highlight the complexity of the strategic relationship between

resolve, conventional capabilities, and inadvertent escalation.
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A Simple Brinkmanship Game

A.1 Assumptions

Note that in this game, for a selected risk level r ∈ {r, r} a type vD ∈ {vD, v̄D} D will
escalate whenever

(1− r) (pvD − kD) + r (−nD − kD) ≥− kD,

or more simply

(1− r)pvD − rnD ≥0,

and will quit otherwise. We assume that if C challenges after observing r̄, then type vD Ds
will quit and type v̄DDs will fight. Using the above, formally, this is (1− r̄)pvD − r̄nD < 0
and (1− r̄)pv̄D− r̄nD > 0 (respectively). We also assume that if C challenges after observing
r, that both types of D prefer fighting to acquiescing, which is (1− r)pvD − rnD > 0.

We also assume that if D sets r = r, then C prefers to challenge, even if doing so always
results in a fight. Formally, this is

(1− r) ((1− p)vC − kC) + r (−nC − kC) > −kC

or more simply

(1− r)(1− p)vC + rnC > 0.

A.2 Equilibrium Statement

The following constitutes a perfect Bayesian Nash Equilibrium. Note that by the assumptions
above, Stage 4 equilibrium behavior is the same across all cases: if r = r and C challenges,
then both types of D will fight; and, if r = r̄ and C challenges, then type v̄D will fight and
type vD will acquiece.

A.2.1 Case A, (1− ζ) ((1− r̄)(1− p)vC − r̄nC) + ζvC ≤ 0,

• Stage 3: If r = r, then C will challenge and believes D is high-resolve with probability
1. If r = r̄, then C does not challenge and believes D is low-resolve with probability ζ
and high-resolve with probability 1− ζ.

• Stage 2: Both types of D will set r = r̄.

A.2.2 Case B, (1− r̄)(1− p)vC − r̄nC > 0

• Stage 3: If r = r, then C will challenge and believes D is low-resolve with probability
ζ and high-resolve with probability 1− ζ. If r = r̄, then C will challenge and believes
D is high-resolve with probability 1.
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• Stage 2: Both types of D will set r = r.

A.2.3 Case C, (1− ζ) ((1− r̄)(1− p)vC − r̄nC) + ζvC > 0, (1− r̄)(1− p)vC − r̄nC ≤ 0,
and (1− r

)pv̄D − r

nD > (1− β)v̄D + β ((1− r̄)pv̄D − r̄nD)

• Stage 3: If r = r, then C will challenge and believes D is low-resolve with probability
ζ and high-resolve with probability 1− ζ. If r = r̄, then believes D is low-resolve with
probability 1.

• Stage 2: Both types of D will set r = r.

A.2.4 Case D, otherwise...

• Stage 3: If r = r, then C will challenge and believes D is low-resolve with probability
1. If r = r̄, then C will challenge with probability β =

vD−(1−r)pvD+rnD

vD
and not

challenge with probability 1 − β; also, observing r = r̄, C believes D is high-resolve
with probability µ = vC

vC+r̄nC−(1−r̄)(1−p)vC
and low-resolve with probability 1− µ.

• Stage 2: High-resolve D always sets r = r̄. Low-resolve D sets r = r̄ with probability
α = (1−ζ)(r̄nC−(1−r̄)(1−p)vC)

ζvC
and sets r = r with probability 1− α.

A.3 Proof of Equilibrium

In all cases, Stage 4 behavior is optimal following the assumptions.

Case A: The condition ((1 − ζ) ((1− r̄)(1− p)vC − r̄nC) + ζvC ≤ 0) implies that, under
high nuclear riskr̄, C weakly prefers acquiescing to challenging when high-resolve types will
fight and low-resolve types will quit when challenged. By assumption, C would challenge if
r = r. C’s on-path beliefs follow priors. Both types of D prefer setting risk r̄ and attaining
the asset without a fight to setting risk rand fighting over the asset. The following parameter
values support the condition of the case and the assumptions: v̄D = 1, vD = 0.2, nD = 1.5,
kD = 0.1, vC = 1, nC = 3, kC = 0.1, r = 0.05, r̄ = 0.2, p = 0.8, and ζ = 0.2.

Case B: The condition (1 − r̄)(1 − p)vC − r̄nC > 0 implies that, under high nuclear riskr̄,
C strictly prefers challenging to acquiescing when challenging always results in a fight. By
assumption, C will challenge if r = r. C’s on-path beliefs follow priors. Given that C will
always challenge, both types of D do best selecting the low-nuclear risk level and fighting
over the asset to setting the high-nuclear risk level and fighting (for high-resolve types) or
acquiescing (for low-resolve types) after being challenged. The following parameter values
support the condition of the case and the assumptions: v̄D = 1, vD = 0.2, nD = 1.5,
kD = 0.1, vC = 2, nC = 1, kC = 0.1, r = 0.05, r̄ = 0.2, p = 0.8, and ζ = 0.5.

Case C: The condition (1− ζ) ((1− r̄)(1− p)vC − r̄nC) + ζvC > 0 implies that, under high
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nuclear risks r̄, C prefers challenging to acquiescing when low- and high-resolve types always
select r̄ and follow Stage 4 equilibrium behavior. The condition (1− r̄)(1− p)vC − r̄nC ≤ 0
implies that, under high nuclear risk r̄, C prefers acquiescing to challenging when only high-
resolve types set r̄ and always fight. The last condition ((1 − r)pv̄D − rnD > (1 − β)v̄D +
β ((1− r̄)pv̄D − r̄nD)) implies that a semi-separating equilibrium cannot exist (and is elab-
orated on in the discussions on Case D). By assumption, C will challenge if r = r. C would
also prefer to challenge upon observing (r = r̄) given C believes that only low-resolve D
would ever select r = r̄ and would then quit when challenged. C’s on-path beliefs follow
priors. Given C’s behavior, both types of D prefer setting r and fighting over the asset to
setting r̄ and fighting over the asset. The following parameter values support the condition
of the case and the assumptions: v̄D = 1, vD = 0.2, nD = 1.5, kD = 0.1, vC = 1, nC = 2,
kC = 0.1, r = 0.05, r̄ = 0.2, p = 0.8, and ζ = 0.5.

Case D: The conditions (1− ζ) ((1− r̄)(1− p)vC − r̄nC) + ζvC > 0 and (1− r̄)(1− p)vC −
r̄nC ≤ 0 were discussed in Case C. Let µ denote the probability that D is high-resolve after C
observes D play r = r̄ (formally, Pr(vD = v̄D|r = r̄) = µ). Observing r̄, C will be indifferent
between challenging (anticipating that high-resolve D will fight and low-resolve D will quit)
and not when

µ ((1− r̄)(1− p)vC − r̄nC) + (1− µ)vC =0,

or

µ =
vC

vC + r̄nC − (1− r̄)(1− p)vC
.

Using Bayes’ rule, we can alternatively define µ in terms of both types of D’s actions. We
define

µ = Pr(vD = v̄D|r = r̄) =
Pr(r = r̄|vD = v̄D) ∗ Pr(vD = v̄D)

Pr(r = r̄|vD = v̄D) ∗ Pr(vD = v̄D) + Pr(r = r̄|vD = vD) ∗ Pr(vD = vD)
,

which is equivalent to

µ =
(1− ζ)

(1− ζ) + αζ
,

where α denotes the probability that type vD sets r = r̄. Combining the two expressions for
µ allows us to characterize α as

α =
(1− ζ) (r̄nC − (1− r̄)(1− p)vC)

ζvC
,

suggesting that so long that type vD sets r = r̄ with probability α, C will be indifferent
between challenging and not challening upon observing r̄. This indifference supports C’s
mixing behavior upon observing r̄.

Additionally, by assumption, C would challenge if r = r, and C’s on-path beliefs are calcu-
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lated via Bayes rule.

A low-resolve D will be indifferent between setting r = r and always fighting and setting
r = r̄ with C sometimes challenging and sometimes not challenging when, letting β denote
the likelihood that C challenges after observing r = r̄, the following holds:

(1− r)pvD − rnD =(1− β)vD.

This can be re-written as

β =
vD − (1− r)pvD + rnD

vD
.

This indifference supports low-resolve D’s mixing behavior between setting r = r and r = r̄.

Finally, we must show that high-resolve D is willing to always select r = r̄. High-resolve
D prefers r = r̄ and sometimes fighting to setting r = r and always fighting whenever
(1 − r)pv̄D − rnD ≤ (1 − β)v̄D + β ((1− r̄)pv̄D − r̄nD); this is implied by the conditions of
the case.

The following parameter values support the condition of the case and the assumptions:
v̄D = 1, vD = 0.2, nD = 1.5, kD = 0.1, vC = 1, nC = 2, kC = 0.1, r = 0.05, r̄ = 0.1, p = 0.8,
and ζ = 0.5.

A.4 Proof that High-Resolve D Risks Nuclear War (Weakly) More

We claim that high-resolve Ds risk a nuclear exchange with greater probability than low-
resolve Ds.

This holds trivially in Cases A, B, and C. For Case D, we can say the following for low-
resolve types:

(1− r)pvD − rnD =(1− β)vD

(1− r)pvD − rnD >(1− β)vD + β ((1− r̄)pvD − r̄nD)

nD (βr̄ − r) >vD ((1− β) + β(1− r̄)p− (1− r)p) (A.1)

The first line holds based on how β is defined. The second line holds because low-resolve D
prefers acquiescing to challlenging under r̄. The last line is algebra.
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Also, for high-resolve types, we can say the following:

(1− r)pv̄D − rnD ≤(1− β)v̄D + β ((1− r̄)pv̄D − r̄nD)

nD (βr̄ − r) ≤v̄D ((1− β) + β(1− r̄)p− (1− r)p) (A.2)

The first line holds based on the conditions of the case, and the second line is algebra.

Because vD < v̄D, combining A.1 and A.2 implies that (1 − β) + β(1 − r̄)p − (1 − r)p
must be positive, which also implies that r < βr̄. In Case D, the likelihood that type vD
enters into a nuclear exchange is (1 − α)r, and the likelihood that type v̄D enters into a
nuclear exchange is βr̄. Because α ∈ [0, 1] and r < βr̄, high-resolve D’s risks nuclear war
with higher likelihood.

B Simple Contest of Capabilities Game

B.1 Assumptions

Similar to the brinkmanship game, we assume that (1−r̄)pvD−r̄nD < 0, (1−r̄)pv̄D−r̄nD > 0
, (1 − r)pvD − rnD > 0, and (1 − r)(1 − p)vC + rnC > 0. We now also assume that that
high-resolve Ds prefer selecting the high nuclear escalation level (with high sunk costs) if
this means that they attain the asset without a fight relative to selecting the low nuclear
escalation level (with no sunk costs) and then fighting over the asset. Formally, this is the
following:

v̄D −K(r̄) >(1− r)pv̄D − rnD

We also assume that low-resolve types have the opposite preferences: they prefer selecting
into the low nuclear escalation level and fighting over the asset to selecting the high nuclear
escalation level and incurring the high sunk costs, even if it means that they attain the asset.
Formally, this is the following:

vD −K(r̄) <(1− r)pvD − rnD

B.2 Equilibrium Statement

The following constitutes a perfect Bayesian Nash Equilibrium. Note that by the assumptions
above, Stage 4 equilibrium behavior is the same across all cases: if r = r and C challenges,
then both types of D will fight; and, if r = r̄ and C challenges, then type v̄D will fight and
type vD will acquiece.

B.2.1 Case E, 0 < (1− r̄)(1− p)vC − r̄nC,

• Stage 3: If r = r, then C will challenge and believes D is low-resolve with probability
ζ and high-resolve with probability 1− ζ. If r = r̄, then C will challenge and believes
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D is high-resolve with probability 1.

• Stage 2: Both types of D will set r = r.

B.2.2 Case F, otherwise...

• Stage 3: If r = r, then C will challenge and believes D is low-resolve with probability
1. If r = r̄, then C will not challenge and believes D is high-resolve with probability 1.

• Stage 2: High-resolve Ds will set r = r̄ and low-resolve Ds will set r = r.

B.3 Proof of Equilibrium

In all cases, Stage 4 behavior is optimal following the assumptions.

Case E: The condition 0 < (1− r̄)(1− p)vC − r̄nC implies that, under high nuclear risk r̄,
C prefers challenging to acquiescing when C must fight after challenging. By assumption, C
would challenge if r = r̄ or r = r. C’s on-path beliefs follow priors. Both types of D prefer
setting risk r and fighting over the asset to setting risk r̄ and fighting over the asset (for
high-resolve types) or acquiescing (for low-resolve types). The following parameter values
support the condition of the case and the assumptions: v̄D = 1.5, vD = 0.2, nD = 1.5,
kD = 0.1, vC = 1.5, nC = 2, kC = 0.1, r = 0.05, r̄ = 0.1, p = 0.8, ζ = 0.5, and K(r̄) = 0.4.

Case F: The condition 0 ≥ (1− r̄)(1− p)vC − r̄nC implies that, under high nuclear risk r̄,
C prefers acquiescing to challenging when C must fight after challenging. By assumption,
C would challenge if r = r and would acquiesce if r = r̄. C’s on-path beliefs follow D’s
strategic play. The assumption v̄D −K(r̄) > (1 − r)pv̄D − rnD implies that high-resolve D
prefers setting r = r̄ and having C acquiesce to setting r = r and fighting over the asset. In
contrast, the assumption vD −K(r̄) < (1− r)pvD − rnD implies that low-resolve D prefers
setting r = r and fighting over the asset to setting r = r̄ and having C acquiesce. The
following parameter values support the condition of the case and the assumptions: v̄D = 1.5,
vD = 0.2, nD = 1.5, kD = 0.1, vC = 1, nC = 2, kC = 0.1, r = 0.05, r̄ = 0.1, p = 0.8, ζ = 0.5,
and K(r̄) = 0.4.

C Proofs of Named Results

C.1 Proof of Proposition 1

Proposition 1. In any equilibrium of a contest of nerves, the total probability of war and the
Defender’s equilibrium utility weakly increase with the Defender’s resolve: if θ′ < θ′′, then
π(θ′)[1−R(h(θ′))] ≥ π(θ′′)[1−R(h(θ′′))] and U(θ′) ≤ U(θ′′).

Proof. We prove the result by showing that there is a payoff-equivalent direct mechanism
in an ordinary crisis bargaining game that satisfies the incentive compatibility conditions of
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Banks (1990). For Banks (1990), a direct mechanism is defined by a function x : Θ → R
giving settlement values and a function p : Θ → [0, 1] giving the probability of war. Given
such a mechanism, the expected utility to type θ for mimicking the bargaining strategy of
type θ′ is given by

Φ̃D(θ
′ | θ) = p(θ′)θ + (1− p(θ′))x(θ′).

Now consider a direct mechanism for a contest of nerves that satisfies our incentive compat-
ibility condition, (IC), and define the following functions:

x(θ) = VD(θ)−
κD(h(θ))

1−R(h(θ))
,

p(θ) = 1− π(θ) [1−R(h(θ))] .

For all θ, θ′ ∈ Θ, we have

Φ̃D(θ
′ | θ) = p(θ′)θ + (1− p(θ′))x(θ′)

= (1− [1−R(h(θ′))] π(θ′)) θ + π(θ′) [1−R(h(θ′))]VD(θ
′)− π(θ′)κD(h(θ

′))

= π(θ′) [(1−R(h(θ′)))VD(θ
′) +R(h(θ′))θ − κD(h(θ

′))] + (1− π(θ′))θ

= ΦD(θ
′ | θ).

Incentive compatibility of the original direct mechanism therefore implies incentive compat-
ibility of the Banks (1990) mechanism (x, p). The first claim of the proposition then follows
from Lemma 1 of Banks (1990), and the second follows from his Lemma 4.

C.2 Proof of Corollary 1

Corollary 1. In any equilibrium of a contest of nerves, if war never occurs deliberately
(π(θ) = 1 for all θ), then the probability of accidental war and the Defender’s settlement
value weakly increase with the Defender’s resolve: if θ′ < θ′′, then R(h(θ′)) ≤ R(h(θ′′)) and
VD(θ

′) ≤ VD(θ
′′).

Proof. The first claim is immediate from Proposition 1, setting π(θ′) = π(θ′′) = 1. To prove
the second claim, observe that the function κD

1−R
is weakly increasing in h, as κD and R are

both non-decreasing in h. Following the proof of Proposition 1, Lemma 2 of Banks (1990)
implies

VD(θ
′′)− VD(θ

′) ≥ κD(h(θ
′′))

1−R(h(θ′′))
− κD(h(θ

′))

1−R(h(θ′))
.

Because R is strictly increasing, R(h(θ′′)) ≥ R(h(θ′)) implies h(θ′′) ≥ h(θ′), so the RHS of
the above expression is non-negative.

C.3 Proof of Proposition 2

Proposition 2. Consider an equilibrium of a contest of capabilities.
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(a) The probability of accidental war weakly increases with the Defender’s resolve if

[KD(h
′′, θ′′)−KD(h

′, θ′′)]− [KD(h
′′, θ′)−KD(h

′, θ′)] < [R(h′′)−R(h′)](θ′′ − θ′) (1)

for all h′, h′′ ∈ h(Θ1) and θ′, θ′′ ∈ Θ1 such that h′ < h′′ and θ′ < θ′′.

(b) The probability of accidental war weakly decreases with the Defender’s resolve if

[KD(h
′′, θ′′)−KD(h

′, θ′′)]− [KD(h
′′, θ′)−KD(h

′, θ′)] > [R(h′′)−R(h′)](θ′′ − θ′) (2)

for all h′, h′′ ∈ h(Θ1) and θ′, θ′′ ∈ Θ1 such that h′ < h′′ and θ′ < θ′′.

Proof. We will prove the first claim; the proof of the second is analogous. Take any θ′, θ′′ ∈ Θ1

such that θ′ < θ′′, and suppose h(θ′) > h(θ′′). To economize on notation in the remainder
of the proof, define h′ ≡ h(θ′), V ′ ≡ VD(θ

′), and R′ ≡ R(h(θ′)); and let h′′, V ′′, and R′′ be
defined analogously. Incentive compatibility for θ′ implies

(1−R′)V ′ +R′θ′ −KD(h
′, θ′) ≥ (1−R′′)V ′′ +R′′θ′ −KD(h

′′, θ′),

which is equivalent to

(R′ −R′′)θ′ − [KD(h
′, θ′)−KD(h

′′, θ′)] ≥ (1−R′′)V ′′ − (1−R′)V ′.

Similarly, incentive compatibility for θ′′ implies

(1−R′′)V ′′ +R′′θ′′ −KD(h
′′, θ′′) ≥ (1−R′)V ′ +R′θ′′ −KD(h

′, θ′′),

which is equivalent to

(1−R′′)V ′′ − (1−R′)V ′ ≥ (R′ −R′′)θ′′ − [KD(h
′, θ′′)−KD(h

′′, θ′′)] .

Combining the incentive compatibility conditions and rearranging terms gives

[KD(h
′, θ′′)−KD(h

′′, θ′′)]− [KD(h
′, θ′)−KD(h

′′, θ′)] ≥ (R′ −R′′)(θ′′ − θ′).

Because h′ > h′′ and θ′′ > θ′, this implies that Equation 1 does not hold.

C.4 Proof of Proposition 3

The proof of the proposition follows a series of lemmas. The method of proof is similar to
other envelope theorem analyses (e.g., in Banks 1990; Kenkel and Schram 2024).
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C.4.1 Envelope theorem

Lemma C.1. Suppose the differentiability assumptions hold. For any IC direct mechanism
in which all types settle, we have

UD(θ) = U(θ) +

∫ θ

θ

[
R(h(t))− ∂KD(h(t), t)

∂t

]
dt (C.3)

for all θ ∈ Θ.

Proof. (IC) implies UD(θ) = supθ′∈Θ ΦD(θ
′ | θ) for all θ ∈ Θ. The differentiability assump-

tions imply that ∂ΦD(θ′|θ)
∂θ

exists for all θ, θ′ ∈ Θ. Corollary 1 of Milgrom and Segal (2002)
then implies

UD(θ) = UD(θ) +

∫ θ

θ

∂ΦD(θ
′ | t)

∂t

∣∣∣∣
θ′=t

dt

= UD(θ) +

∫ θ

θ

[
R(h(t))− ∂KD(h(t), t)

∂t

]
dt

for all θ ∈ Θ, as claimed.

C.4.2 Value of settlement

Lemma C.2. Suppose the differentiability assumptions hold, and consider a direct mechanism
in which π = 1. For all θ ∈ Θ, Equation C.3 is satisfied if and only if

VD(θ) =
U(θ)−R(h(θ))θ +KD(h(θ), θ) +

∫ θ

θ

[
R(h(t))− ∂KD(h(t),t)

∂t

]
dt

1−R(h(θ))
. (C.4)

Proof. Immediate from setting

(1−R(h(θ)))VD(θ) +R(h(θ))θ −KD(h(θ), θ) = UD(θ) +

∫ θ

θ

[
R(h(t))− ∂KD(h(t), t)

∂t

]
dt

and solving for VD(θ).

C.4.3 Global incentive compatibility

Lemma C.3. Suppose the differentiability assumptions hold. Consider a direct mechanism
in which π = 1, VD(θ) satisfies Equation C.4 for all θ ∈ Θ, and h is absolutely continuous.
For all θ ∈ Θ, ΦD(· | θ) is differentiable almost everywhere, with

∂ΦD(θ
′ | θ)

∂θ′
= h′(θ′)

[
R′(h(θ′))(θ − θ′)−

(
∂KD(h(θ

′), θ)

∂h
− ∂KD(h(θ

′), θ′)

∂h

)]
(C.5)

at each point of differentiability.
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Proof. For all θ, θ′ ∈ Θ,

ΦD(θ
′ | θ) = (1−R(h(θ′)))VD(θ

′) +R(h(θ′))θ −KD(h(θ
′), θ)

= (1−R(h(θ′)))VD(θ
′) +R(h(θ′))θ′ −KD(h(θ

′), θ′)

+R(h(θ′))(θ − θ′)− [KD(h(θ
′), θ)−KD(h(θ

′), θ′

= UD(θ
′) +R(h(θ′))(θ − θ′)− [KD(h(θ

′), θ)−KD(h(θ
′), θ′)].

As R and KD are Lipschitz (via their continuous differentiability), absolute continuity of
h implies R(h(·)) and KD(h(·), ·) are absolutely continuous and thus differentiable almost
everywhere (Cobzaş, Miculescu and Nicolae 2019). Additionally, Lemma C.2 implies that
UD is absolutely continuous as well. Therefore, ΦD(· | θ) is differentiable almost everywhere,
with

∂ΦD(θ
′ | θ)

∂θ′
= U ′

D(θ
′) +R′(h(θ′))h′(θ′)(θ − θ′)−R(h(θ′))− ∂KD(h(θ

′), θ)

∂h
h′(θ′)

+
∂KD(h(θ

′), θ′)

∂h
h′(θ′) +

∂KD(h(θ
′), θ′)

∂θ′

= h′(θ′)

[
R′(h(θ′))(θ − θ′)−

(
∂KD(h(θ

′), θ)

∂h
− ∂KD(h(θ

′), θ′)

∂h

)]
at each point of differentiability.

C.4.4 Proof of proposition

Proposition 3. Suppose the differentiability assumptions hold.

(a) Let h∗ be any absolutely continuous, weakly increasing function that satisfies

∂2KD(h, θ)

∂h∂θ
≤ R′(h) for all h ∈ h∗(Θ), θ ∈ Θ.

There is an incentive compatible direct mechanism in which π(θ) = 1 and h(θ) = h∗(θ)
for all θ ∈ Θ.

(b) Let h∗∗ be any absolutely continuous, weakly decreasing function that satisfies

∂2KD(h, θ)

∂h∂θ
≥ R′(h) for all h ∈ h∗∗(Θ), θ ∈ Θ.

There is an incentive compatible direct mechanism in which π(θ) = 1 and h(θ) = h∗∗(θ)
for all θ ∈ Θ.

Proof. We prove the first claim; the proof of the second is analogous. Take any V0 ∈ R, set
VD(θ) = V0,1 and then define VD(θ) according to Equation C.4 for all θ ∈ (θ, θ]. For any

1A task for future work is to identify a sharp condition under which (VA) holds as well.
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θ ∈ Θ and almost all θ′ ∈ [θ, θ), Lemma C.3 implies

∂ΦD(θ
′ | θ)

∂θ′
= h′(θ′)

[
R′(h(θ′))(θ − θ′)−

(
∂KD(h(θ

′), θ)

∂h
− ∂KD(h(θ

′), θ′)

∂h

)]
= h′(θ′)

[
R′(h(θ′))(θ − θ′)−

∫ θ

θ′

∂2KD(h(θ
′), t)

∂h∂t
dt

]
≥ h′(θ′)

[
R′(h(θ′))(θ − θ′)−

∫ θ

θ′
R′(h(θ′)) dt

]
= 0.

Therefore, ΦD(θ | θ) ≥ ΦD(θ
′ | θ) for all θ′ < θ. Similarly, for almost all θ′ ∈ (θ, θ],

∂ΦD(θ
′ | θ)

∂θ′
= h′(θ′)

[
R′(h(θ′))(θ − θ′)−

(
∂KD(h(θ

′), θ)

∂h
− ∂KD(h(θ

′), θ′)

∂h

)]
= h′(θ′)

[(
∂KD(h(θ

′), θ′)

∂h
− ∂KD(h(θ

′), θ)

∂h

)
−R′(h(θ′))(θ′ − θ)

]
= h′(θ′)

[∫ θ′

θ

∂2KD(h(θ
′), t)

∂h∂t
dt−R′(h(θ′))(θ′ − θ)

]

≤ h′(θ′)

[∫ θ′

θ

R′(h(θ′)) dt−R′(h(θ′))(θ′ − θ)

]
= 0.

Therefore, ΦD(θ | θ) ≥ ΦD(θ
′ | θ) for all θ′ > θ, which combined with the prior result implies

that the direct mechanism satisfies (IC).

C.5 Proof of Proposition 4

Proposition 4. Consider an equilibrium of a contest of capabilities. Let Θ1 denote the set
of types that reach an agreement in equilibrium: Θ1 ≡ {θ ∈ Θ | π(θ) = 1}.

(a) Less-resolved Defender types reach agreement and more-resolved types deliberately choose
war (i.e., closΘ1 = {θ ∈ Θ | θ ≤ θ̂} for some θ̂) if

KD(h
′, θ′)−KD(h

′, θ′′)

θ′′ − θ′
< 1−R(h′) (3)

for all h′ ∈ h(Θ1) and all θ′, θ′′ ∈ Θ such that θ′ < θ′′.

(b) Less-resolved Defender types deliberately choose war and more-resolved types reach
agreement (i.e., closΘ1 = {θ ∈ Θ | θ ≥ θ̂} for some θ̂) if

KD(h
′, θ′)−KD(h

′, θ′′)

θ′′ − θ′
> 1−R(h′) (4)
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for all h′ ∈ h(Θ1) and all θ′, θ′′ ∈ Θ such that θ′ < θ′′.

Proof. We prove the first claim; the proof of the second is analogous. Consider a direct
mechanism that satisfies (IC) in which a less-resolved Defender type deliberately chooses
war and a more-resolved type reaches agreement—i.e., π(θ′) = 0 and π(θ′′) = 1, where
θ′ < θ′′. Incentive compatibility for θ′ implies

θ′ ≥ (1−R(h(θ′′)))VD(θ
′′) +R(h(θ′′))θ′ −KD(h(θ

′′), θ′),

while incentive compatibility for θ′′ implies

(1−R(h(θ′′)))VD(θ
′′) +R(h(θ′′))θ′′ −KD(h(θ

′′), θ′′) ≥ θ′′.

Combined these imply

KD(h(θ
′′), θ′)−KD(h(θ

′′), θ′′)

θ′′ − θ′
≥ 1−R(h(θ′′)).

Therefore, Equation 3 does not hold.

C.6 Proof of Proposition 5

Proposition 5. Suppose the linearity assumptions hold and r − 1 < k ≤ k < r.

(a) Equation 1 and Equation 3 hold.

(b) Let π∗ be any absolutely continuous, weakly decreasing function such that π∗(θ) > 0 for
all θ ∈ Θ, and let h∗ be any absolutely continuous function that satisfies

dh∗(θ)

dθ
≥

1
r−k

− h∗(θ)

π∗(θ)
· dπ

∗(θ)

dθ

for all θ ∈ Θ at which h∗ and π∗ are differentiable. There is an incentive compatible
direct mechanism in which π(θ) = π∗(θ) and h(θ) = h∗(θ) for all θ ∈ Θ.

(c) Let π∗∗ be any absolutely continuous, weakly increasing function such that π∗∗(θ) > 0
for all θ ∈ Θ, and let h∗∗ be any absolutely continuous function that satisfies

dh∗∗(θ)

dθ
≥

1
r−k

− h∗∗(θ)

π∗∗(θ)
· dπ

∗∗(θ)

dθ

for all θ ∈ Θ at which h∗∗ and π∗∗ are differentiable. There is an incentive compatible
direct mechanism in which π(θ) = π∗∗(θ) and h(θ) = h∗∗(θ) for all θ ∈ Θ.

Proof. Claim (a). Under the linearity assumptions, Equation 1 is equivalent to

k(θ′′)− k(θ′)

θ′′ − θ′
< r.
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The assumption that k′ < r ensures that this holds. Meanwhile, Equation 3 is equivalent to

k(θ′′)− k(θ′)

θ′′ − θ′
> r − 1

h′ .

Because maxH = 1, the assumption that k′ > r − 1 ensures that this holds for all h′ ∈ H.

Preliminary to claims (b) and (c). We omit the proofs that UD must satisfy a local incentive
compatibility condition given by the envelope theorem and that VD can always be chosen
to satisfy this condition given VD(θ); these are analogous to the proofs of Lemma C.1 and
Lemma C.2 above. In the general case where π(θ) ∈ [0, 1], the envelope condition is

U ′
D(θ) =

∂ΦD(θ
′ | θ)

∂θ

∣∣∣∣
θ′=θ

= π(θ)

[
R(h(θ))− ∂KD(h(θ), θ)

∂θ

]
+ 1− π(θ).

Under the linearity assumptions, this simplifies further to

U ′
D(θ) = π(θ)h(θ) [r − k′(θ)] + 1− π(θ).

We now obtain the derivative of ΦD with respect to the reported type θ′, which will allow
us to verify global incentive compatibility. For all θ, θ′ ∈ Θ, we have

ΦD(θ
′ | θ) = π(θ′) [(1− rh(θ′))VD(θ

′) + rh(θ′)θ − k(θ)h(θ′)] + (1− π(θ′))θ

= UD(θ
′) + [1− π(θ′) + rπ(θ′)h(θ′)](θ − θ′)− π(θ′)h(θ′)[k(θ)− k(θ′)].

Let h and π be absolutely continuous. ΦD(· | θ) is absolutely continuous and thus differen-
tiable almost everywhere, per the same argument as in the proof of Lemma C.3 above. At
each point of differentiability,

∂ΦD(θ
′ | θ)

∂θ′
= 1− π(θ′) + rπ(θ′)h(θ′)− π(θ′)h(θ′)k′(θ′)

+ [r(πh)′(θ′)− π′(θ′)](θ − θ′)− [1− π(θ′) + rπ(θ′)h(θ′)]

− (πh)′(θ′)[k(θ)− k(θ′)] + π(θ′)h(θ′)k′(θ′)

= [r(πh)′(θ′)− π′(θ′)](θ − θ′)− (πh)′(θ′)[k(θ)− k(θ′)]

= (πh)′(θ′) [r(θ − θ′)− k(θ) + k(θ′)]− π′(θ′)(θ − θ′)

=

(
(πh)′(θ′)

[
r − k(θ)− k(θ′)

θ − θ′

]
− π′(θ′)

)
(θ − θ′). (C.6)

Note that r − k(θ)−k(θ′)
θ−θ′

∈ [r − k, r − k] ⊆ (0, 1) for all distinct θ, θ′ ∈ Θ.

Claim (b). Suppose π is weakly decreasing and that h′(θ′) ≥
[

1
r−k

− h(θ′)
]

π′(θ′)
π(θ′)

for all θ′ at
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which h and π are differentiable. Because π′(θ′) ≤ 0, this implies that for all θ ∈ Θ,

(πh)′(θ′) = π′(θ′)h(θ′) + π(θ′)h′(θ′) ≥ π′(θ′)

r − k
≥ π′(θ′)

r − k(θ)−k(θ′)
θ−θ′

,

so the first term in parentheses in Equation C.6 is non-negative. Therefore, for all θ, θ′ ∈ Θ
such that ΦD(θ

′ | θ) is differentiable in θ′, we have that θ > θ′ implies ∂ΦD(θ′|θ)
∂θ′

≥ 0 and
θ < θ′ implies ∂ΦD(θ′|θ)

∂θ′
≤ 0. Because ΦD(· | θ) is absolutely continuous, this implies that the

direct mechanism satisfies (IC).

Claim (c). Suppose π is weakly increasing and that h′(θ′) ≥
[

1
r−k

− h(θ′)
]

π′(θ′)
π(θ′)

for all θ′ at
which h and π are differentiable. Because π′(θ′) ≥ 0, this implies that for all θ ∈ Θ,

(πh)′(θ′) = π′(θ′)h(θ′) + π(θ′)h′(θ′) ≥ π′(θ′)

r − k
≥ π′(θ′)

r − k(θ)−k(θ′)
θ−θ′

.

The first term in parentheses in Equation C.6 is again non-negative, and the proof of incentive
compatibility follows as in the last step.

C.7 Proof of Proposition 6

Proposition 6. In the model where D’s type is prize value, if QC(βD) = QD(βD) = 0 for
all βD, then the direct mechanism is isomorphic to a contest of capabilities in the baseline
framework in which Equation 1 is satisfied. If additionally κD(h(βD)) = 0 for all βD, then
it is isomorphic to a contest of nerves.

Proof. Take an incentive compatible mechanism that satisfies (IR-D). Define a corresponding
contest of capabilities as follows:

• Map prize-value types βD into war-payoff types θ(βD) as follows:

θ(βD) =
−nD

βD

.

Because −nD < 0, this is a strictly increasing (and thus invertible) function.

• Define the hassling cost function KD(h, θ) as

KD(h, θ) =
θκD(h)

−nD

.

Notice that this is weakly decreasing in θ for θ < 0, so Equation 1 is satisfied. It is
constant in θ if κD = 0, in which case the transformed model is a contest of nerves per
our definition.

Now define a direct mechanism in the baseline framework where π̃(θ) = 1, h̃(θ) = h(−nD

θ
),

and ṼD(θ) = SD(−nD

θ
). Observe that Φ̃D(· | θ(βD)) ∝ ΨD(· | βD) for all βD: for any
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θ′ ∈ [θ(β
D
), θ(βD)],

Φ̃D(θ
′ | θ(βD)) = (1−R(h̃(θ′)))ṼD(θ

′) +R(h̃(θ′))θ(βD)−KD(h̃(θ
′), θ(βD))

= (1−R(h̃(θ′)))ṼD(θ
′) +

[
R(h̃(θ′)) +

κD(h̃(θ
′))

nD

]
θ(βD)

= (1−R(h(β′
D)))SD(β

′
D) +

[
R(h(β′

D)) +
κD(h(β

′
D))

nD

]
· −nD

βD

= (1−R(h(β′
D)))SD(β

′
D)−

R(h(β′
D))nD

βD

− κD(h(β
′
D))

βD

=
ΨD(β

′
D | βD)

βD

where β′
D ≡ −nD

θ′
. Incentive compatibility of (QC , QD, h, SD) therefore implies incentive

compatibility of (π̃, h̃, ṼD). Additionally, because θ(βD) < 0 for all βD, the latter mechanism
trivially satisfies voluntary agreements because the former satisfies (IR-D).

C.8 Proof of Proposition 7

Proposition 7. In the model where D’s type is prize value, there exist β̃, β̂ ∈ [β
D
, βD] such

that:

(a) For all βD < β̃, QD(βD) = 1 and κD(h(βD)) = 0.

(b) For all βD ∈ (β̃, β̂), QC(βD) = QD(βD) = 0. h(βD) and SD(βD) are weakly increasing
on this interval of types.

(c) For all βD > β̂, QC(βD) = 1. There exists κ̂ such that κD(h(βD)) < κ̂ for all βD < β̂
and κD(h(βD)) = κ̂ for all βD > β̂.

Proof. First, consider types β′
D, β

′′
D such that QD(β

′
D) = 1 and QC(β

′′
D) = QD(β

′′
D) = 0.

Incentive compatibility for each of these types implies

SD(β
′′
D)β

′′
D ≥ R(h(β′′

D))nD + κD(h(β
′′
D))− κD(h(β

′
D)) ≥ SD(β

′′
D)β

′
D,

which in turn implies β′′
D > β′

D. Now consider a third type β′′′
D such that QC(β

′′′
D) = 1.

Incentive compatibility for β′′
D and β′′′

D implies

[1− SD(β
′′
D)]β

′′′
D ≥ κD(h(β

′′′
D))− κD(h(β

′′
D))−R(h(β′′

D))nD ≥ [1− SD(β
′′
D)]β

′′
D,

which in turn implies β′′′
D ≥ β′′

D. This proves that the type space can be partitioned into
(potentially empty) intervals in which the lowest types of D quit, the highest types induce
C to quit, and in between neither state quits.

The claim in (a) that QD(βD) = 1 implies κD(h(βD)) = 0 is immediate from (IR-D).
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To prove the claim in (b) that h and SD are weakly increasing, consider types β′
D, β

′′
D ∈ (β̃, β̂)

such that h(β′
D) < h(β′′

D). Incentive compatibility for both types implies

[SD(β
′′
D)− SD(β

′
D)]β

′′
D

≥ [R(h(β′′
D))−R(h(β′

D))]nD + κD(h(β
′′
D))− κD(h(β

′
D))

≥ [SD(β
′′
D)− SD(β

′
D)]β

′
D.

h(β′
D) < h(β′′

D) implies that the middle term of the above expression is strictly positive, so
the first inequality implies SD(β

′′
D) > SD(β

′
D). This in turn implies β′′

D > β′
D.

Finally, to prove the claims about κ̂ in (c), consider types β′
D, β

′′
D > β̂. Incentive compatibility

for these two types implies

κD(h(β
′′
D))− κD(h(β

′
D)) ≥ 0 ≥ κD(h(β

′
D))− κD(h(β

′′
D)),

so κD(h(β
′
D)) = κD(h(β

′′
D)) = κ̂. Additionally, incentive compatibility for any βD < β̂ implies

SD(βD)βD −R(h(βD))nD − κD(h(βD)) ≥ βD − κ̂.

Because SD(βD) < 1, this implies κ̂ > κD(h(βD)).
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