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Abstract

Crises in the nuclear era are commonly framed as “contests of nerves,” where actors
compete by raising the background risk of a nuclear exchange until one side lacks the
resolve to continue and backs down. But this framing may be too reductive: in practice,
actors deploy a range of coercive capabilities that both alter the risk of escalation and
shape political outcomes. How do these limited coercive capabilities shape outcomes
in nuclear crises? We analyze the “contests of nerves” framework, finding broadly that
more resolved actors will take greater escalation risks and perform better in conflict. We
also analyze a “contests of capabilities” framework, showing that when a state’s resolve
also shapes its willingness to compete at lower levels, more resolved actors may engage
in less risky or less decisive measures. We use a game-free methodology to study how
the underlying military fundamentals affect crisis behavior in settings with autonomous
escalation risk across a wide variety of bargaining games.
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International politics rarely goes according to plan. History is replete with accidents, id-

iosyncrasies, and unintended consequences altering the scope and context of crises, leading

to instability and escalation. Perhaps nowhere is this instability better acknowledged and

integrated than in the scholarship on nuclear deterrence. Because deliberate first use of

strategic nuclear weapons against a capable nuclear armed opponent is tantamount to sui-

cide, states cannot easily use these weapons to directly threaten their opponents or as a direct

means of deterrence (Schelling 1966). Instead, nuclear weapons shape politics through the

possibility of unintended use: in the nuclear era, states enter into crises or limited engage-

ments knowing that their actions and their adversaries’ actions carry the risk of missteps,

miscalculations, or inadvertent escalation (Brodie 1966; Schelling 1966, 1980; Powell 1989,

2015; Posen 2014). To describe these new strategic dynamics, scholars have classified crises

and limited engagements in the nuclear era as “contests of nerves” or exercises in “brinkman-

ship,” where states strategically use this background escalation risk over the course of the

engagement (Schelling 1966, 1980; Powell 1989, 2015). In these conflicts that leave some-

thing to chance, adversaries now seemingly stand eyeball to eyeball, hoping that their rivals

are less willing to run risks of a general war and will blink first before disaster strikes.

For decades, the scholarship on nuclear brinkmanship has examined and formalized these

settings (Snyder 1965; Jervis 1976; Powell 1989, 1990). But, much of what occurs in the

international politics of the nuclear era does not resemble these stylized “contests of nerves.”

Consider the West’s support for Ukraine in its war against Russia. By keeping Russia in a

continued state of war, Russia remains on edge, thus opening the possibility that a human

error or a faulty missile detection system results in an inadvertent escalation (Paul et al.

1990; Sagan 1994; Perrow 2011; Posen 2014). And by running military supply chains through

NATO countries, through mistake or malice, a Russian General may one day strike within a

NATO state, thus raising the unintended risk of a NATO-Russia war (Posen 2014). In short,

support to Ukraine comes with risks: at any time, this proxy war could evolve into a more

general or even nuclear war between NATO countries and Russia. But despite these (even
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nuclear) escalation risks, the West is not arming Ukraine because it is more resolved than

Russia or because the West thinks that Russia will, at some point, deem the escalation risks

too pressing and retreat. Supplying Ukraine is not “rocking the boat” or playing a game of

“chicken” with Russia. Rather, through arming, Ukraine persists, continues to challenge the

Russian militarily, and strains the inner politics of the Russian state. From the perspective

of Western leaders, the political benefits of arming Ukraine have been enough to justify

continued support, despite the background risks of greater war.

Western support for Ukraine is just one example highlighting an important shortcoming

in our understanding of limited war and escalation. For decades, scholars have carefully

studied “contests of nerves,” where actors generate risks within crises, hoping that their

opponents are less resolved and will not accept the risk of a catastrophic escalation (Snyder

1965; Jervis 1976; Schelling 1980, 1966; Powell 1989, 1990). While the contests of nerves

framing has allowed scholars to make valuable progress in the theoretical study of nuclear

deterrence, this framework is quite reductive—in practice, in the crises of the nuclear era,

actors use their conventional or low-level capabilities to generate escalation risks and shape

the politics on the ground. As examples, the Berlin Airlift (1948), the Soviet Union’s response

to the Hungarian Revolution (1959), and the US’s support to Afghan Mujahideen during the

Russian invasion of Afghanistan (1979-1989) all carried some form of escalation risk,1 but

the conventional or irregular capabilities were the pivotal factors shaping how the respective

Cold War crises played out. In these crises and others, bargaining outcomes depend not only

on the adversaries’ resolve, but also on their capabilities.

To establish a more general theoretical framing and results, we proceed in two parts. First,

we formally define the “contests of nerves” theoretical framing. In contests of nerves, actors

engage in a deterrence or bargaining game while taking some action that raises or lowers the
1While there was no risk of a nuclear exchange in the Berlin Airlift case and close to zero risk of nuclear

escalation in the Afghanistan case, both crises carried the risk of accidents or mishaps necessitating an
escalation to a conventional engagement between Soviet and Western forces.
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likelihood of a nuclear exchange—for example, by exiting or not exiting a crisis. This framing

matches seminal models of nuclear deterrence like Nalebuff (1986) or Powell (1989). We

then demonstrate that the equilibria to these contests of nerves share a similar underlying

pattern: when an actor is more resolved, this actor will take riskier actions, and will, in

expectation, end up with a greater payoff.2 Importantly, to make these sweeping claims,

we conduct a game-free analysis of these contests of nerves, along the along the lines of

previous mechanism design research (Banks 1990; Fey and Ramsay 2011; Akçay et al. 2012;

Spaniel 2020; Liu 2021). Doing so allows us to verify that, regardless of how bargaining,

deterrence, or escalation happens in these models and regardless of how actors play the

game (i.e., whether they play truthfully, bluff, signal, or posture), these contests of nerves

will always have the feature of more resolved actors behaving in riskier ways and attaining,

in expectation, better outcomes.

Second, we analyze a novel and more general theoretical framing for crises with stochastic

escalation risk: “contests of capabilities.” Formally, in these contests of capabilities, actors

engage in a deterrence or bargaining game while selecting costly actions—like arming Ukraine

or executing the Berlin Airlift—that shift political outcomes and generate escalation risks.3

In these contests of capabilities, we assume that a state’s resolve influences their willingness

or abilities to conduct war at multiple levels. As one justification for this assumption, if a

country possesses a technological capacity that would allow it to do well in a nuclear war

(strong command and control, sophisticated technology for missile delivery, powerful tools

for left-of-launch attacks, etc.), then that country also plausibly has the tools to do well

in a conventional war. In these contests of capabilities, actors with greater resolve may be

less likely to take the actions that risk such a war and may even do worse within the game.
2We model resolve as an actor’s private willingness to go to the escalated-war option, as approximated

by that actor’s utility from this option. Note that while Powell (1990, 42-43) critiques some past discussions
of resolve in verbal theories, the result we describe here is also found in every model with probabilistic
escalation in Powell (1990).

3In our formalization, contests of resolve are a special case of contests of capabilities, in which the direct
costs of the limited actions do not vary with a player’s resolve.
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Once more, rather than presenting a single model and presenting a single model that has

this feature, we identify when these patterns arise in a wide range of possible contests of

capabilities.

A key driver of our results is that a state’s resolve—its private willingness to risk a nuclear

strike—might also affect its effectiveness in using alternative policy choices, for better or

worse. How a state’s resolve affects its payoffs from alternate policy choices is critical: the

private signal a state receives about its willingness to risk nuclear war also affects that state’s

willingness to engage in costly, low-level policy instruments that may present their own risk

of escalation to war. For example, suppose that US military communication networks were

compromised or that B-52 or B-2 bombers contained design flaws or vulnerabilities. Because

this would undermine both conventional and nuclear capabilities, in this example, the US

would be less resolved to risk nuclear or conventional engagements.

On the other hand, sometimes actors that are more resolved to engage at one level may be less

inclined to engage at others. On the other hand, actors like North Korea may be willing to

bid up nuclear escalation risks, but their ability to fight an effective conventional war or their

ability to conduct special forces operations, limited airstrikes, third-party support to rebel

groups, or sanctions is quite limited. Here, states like North Korea may be more resolved

(in the nuclear sense) but less willing to engage in other forms of costly, coercive politics.

The question of whether a state’s resolve is associated with a greater or lower willingness to

conduct lower forms of conflict is an empirical one, and its answer varies across cases and

contexts—but these linkages undoubtedly exist, and their effects on the outcomes of crisis

bargaining have not been systematically examined. We demonstrate that this relationship

critically alters how an actor’s resolve shapes their conflict behavior and their outcomes.

In contests of capabilities, the effect of resolve on the risk of inadvertent escalation is deter-

mined by two key features of the underlying military and strategic setting. On one side of

the equation is the relationship between resolve and the marginal cost of the limited policy
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instruments that generate risk: the change in the additional direct cost required to go from

low to high limited capability as the state’s resolve increases. When these marginal costs

decrease with resolve, or even when they only slightly increase, it becomes easier to support

an equilibrium in which more resolved types run greater escalation risks, as in a traditional

contest of nerves. The other key factor is the relationship between limited conflict instru-

ments and the risk of escalation to a broader war. If the risk curve is flat, then a state’s

choice among limited policy instruments will be mainly determined by their direct costs.

Resolve becomes the determinant factor when the risk curve is steeper, with small increases

in the limited capability leading to much larger risks of inadverent escalation.

When a full-scale war would be catastrophic, such as a nuclear exchange with mutually

assured destruction, inadvertent escalation might be the only path to war in equilibrium.

In other contexts, however, states with high enough resolve may be willing to deliberately

fight a full-scale war instead of resorting to limited conflict. Using the same methodology

as in our analysis of inadvertent escalation, we also analyze the relationship between resolve

and deliberate war in contests of capabilities. In any given strategic setting, the effect of

resolve on the purposeful outbreak of war does not necessarily go in the same direction as its

effect on accidental escalation via limited conflict. This is because the relationship between

resolve and deliberate war is a function of the absolute level of escalation risk (rather than

the effect of limited conflict on it) and the effect of resolve on the absolute cost (rather than

the marginal cost) of limited policy options.

This paper makes three primary contributions. First, this paper offers new insights into

the literature on nuclear deterrence theory. We present and analyze a general theoretical

framework derived from how scholars have conceptualized the brinkmanship setting in the

past. While these game-form free analyses have been applied to crisis bargaining models

or to flexible-response crisis bargaining models (Banks 1990; Fey and Ramsay 2011; Kenkel

and Schram 2024), those analysis do not speak to settings with a stochastic escalation risk.
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Through our analysis of contests of nerves, we are able to offer sweeping results on the

relationship between resolve, escalation risks, and outcomes that do not rely on any one

game form. While results like these exist occurred in individual models, we are the first to

establish their ubiquity across this general class of games. Then, we demonstrate that under

a less restrictive modeling framework, the contests of capabilities framing, these general

relationships may break down. In doing so, we are able to speak to a much broader class of

real-world crises, and we are able to redefine how resolve matters in crises with escalation

risks. As we discuss, our framework encompasses a broad class of different modeling choices,

including those implemented in Powell (2015) and Schram (2024) (see section 5).

Second, while it has been useful to motivate this paper through the lens of nuclear deterrence

theory, our results speak to a much broader class of settings. Contests of capabilities, as

explored here, could also describe third party support to terror or insurgent groups, where the

terror group could go too far and create a war between the sponsor and rival. They also could

characterize conflict between rival drug cartels, interacting in the shadow of a government

intervention. And they could describe an incident of economic or political repression that

risks sparking mass protests, coups, or insurgency, pitting the political elites against its

population.

Third, this research expands a recent line of work on crisis bargaining and deterrence in

which states are assumed to have multiple coercive options available to respond to a threat

(Schultz 2010; McCormack and Pascoe 2017; Coe 2018; Spaniel and Malone 2019; Qiu 2022;

Baliga, Bueno de Mesquita and Wolitzky 2020; Schram 2021; Di Lonardo and Tyson 2022).

The paper most closely related work to ours is (Kenkel and Schram 2024), which conducts

a game-form free analysis of crises with multiple conflict options. Our key innovation is to

assume that in this setting there is a stochastic risk of escalation associated with the use

of a lower-level policy instrument. This modification generates new theoretical results, and

allows us to describe a new and under-formalized set of empirical cases.

6



1 The Impact of Capabilities on Brinkmanship

Before we present our general results, we present stylized examples of the “contests of nerves”

and the “contests of capabilities” settings. These game forms are intentionally sparse: these

should be viewed as reduced-form representations that illustrate some of the intuition behind

our general results. To preview what is to come, in section 5, we discuss our results in the

context of the recent brinkmanship models in Powell (2015) and Schram (2024).

In our stylized contest of nerves game, we consider a Challenger (C) and Defender (D) in

a dispute over some territory or policy (we will refer to this as the prize) whose value is

normalized to 1. At the first stage of the game, Nature assigns whether D’s war payoff is

low (θ = θ) or high (θ = θ̄), with each outcome having positive probability. D observes their

private type, while C only knows the prior probability that D is a high or low type. This

private type represents D’s resolve or D’s willingness to risk war. In the nuclear deterrence

setting, this type represents D’s willingness to engage in a nuclear war, which is a function

of D’s capabilities, political motivations, and general hawkishness. While D may have no

desire to intentionally select into a catastrophic nuclear exchange (as can be captured in the

payoffs), D may be more or less willing to risk some probability of such an event.

At the second stage of the game, C selects whether to transgress (t = 1) or not (t = 0). If

C does not transgress, then the game ends; if C does transgress, then D is able to respond.

Finally, if C previously transgressed, D can select some bargaining action or can deliberately

go to the escalated war outcome. In this game form, if D does not want to go to war, D selects

bargaining action bi ∈ {b1, b2}. These bargaining actions could result in an autonomous risk

of a war, but, conditional on war not occurring, they may be politically productive by giving

D a greater share of the prize.

We summarize the game’s payoffs in Table 1.
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θ D’s Payoff θ̄ D’s Payoff C’s Payoff

C does not transgress 1 1 0

C transgresses,

D selects bi

R(bi)WD(θ)+

(1−R(bi))VD(bi)

R(bi)WD(θ̄)+

(1−R(bi))VD(bi)

R(bi)WC+

(1−R(bi))(1−VD(bi))

C transgresses,

D goes to war

WD(θ) WD(θ̄) WC

Table 1: Contest of nerves payoffs.

In this simple game, when C does not transgress, D attains the entirety of the prize. And,

when D goes to war, both D and C receive their wartime payoffs denoted, WC or WD(θ).

For D, the war payoff is a function of their type, with WD(θ) < WD(θ̄). Finally, when

D engages in bargaining by setting some bi, this will shape the bargained outcome VD(bi)

but will also generate some autonomous probability of war R(bi). Thus, bargaining here

resembles how scholars have conceptualized brinkmanship crises in the past: staying in the

crisis or undertaking certain moves could produce better settlement outcomes, but could also

bear some risk of unintended escalation.

To illustrate how this game plays out, consider a numerical parameterization of the variables

above. This is Figure 1. Under the selected parameters (see the Figure’s caption), the

contest of nerves has a simple structure. War is quite bad for both types of D (WD(θ) = −2

and WD(θ̄) = −1), so both types choose between bargaining options b1 and b2. For D,

b1 is less productive politically than b2 (because VD(b1) = 0.4 and VD(b2) = 0.75), but b1

comes with a lower autonomous risk of war (R(b1) = 0.05 and R(b2) = 0.2). Under these

parameters, conditional on C transgressing, type θ D’s will select b1 and type θ̄ D’s will select

b2. Finally, faced with a 50%-50% gamble (because Pr(θ = θ̄) = 0.5) between 0 and 0.52

and a sure-thing of 0, C will transgress.

In equilibrium, type θ̄ D’s will take a greater escalation risk than type θ D’s. As intuition,
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0, 1
t = 0

0.52, 0.28

b1

0, 0.2

b2

−1,−2

war

t = 1

θ = θ

0.52, 0.33

b1

0, 0.4

b2

−1,−1

war

t = 1

0, 1
t = 0

θ = θ̄

Nature

C C

D D

Figure 1: A Contest of Nerves: Greater resolve (θ) implies a greater likelihood of war.

C’s payoffs are listed first. Note here that θ̄ has greater wartime payoffs. In equilibrium, C
will transgress (t = 1), θ D’s will select bargaining action b1, and θ̄ D’s will select bargaining
action b2. Parameter values are R(b1) = 0.05, R(b2) = 0.2, VD(b1) = 0.4, VD(b2) = 0.75,
WD(θ) = −2, WD(θ̄) = −1, WC = −1, and Pr(θ = θ̄) = 0.5.

type θ̄ D’s do better in war (they have greater resolve), so they are more willing to take

riskier bargaining moves to reach better settlement payoffs. More precisely, while type θ̄ D’s

select into a R(b2) = 0.2 autonomous risk of war, they are willing to take this gamble because

their upside (attaining VD(b2) = 0.75) outweighs their downside (attaining WD(θ̄) = −1).

In contrast, for type θ D’s, this downside (attaining WD(θ) = −2) no longer makes the risk

of b2 worthwhile; type θ D’s play it safer by selecting b1 (autonomous risk R(b1) = 0.05).

As we will demonstrate later in the paper, this relationship—where more resolved actors

play riskier bargaining strategies—is generic to the contests of nerves class of games (see

section 3).

Now consider a generalization to the contests of nerves framing: the “contests of capabilities”

framework. Here, taking the productive political moves that generate autonomous risk now

come with costs that are correlated with resolve. These actions could include sanctions,

implementing a blockade, supplying allies through an airlift, offering third-party support

to rebels, conducting special operations, or even carrying out a conventional war—what

matters here is that these actions are politically productive, costly, and conducted in an

9



environment where escalation to some higher level of conflict is still possible. We will refer

to this class of costly, productive actions using the shorthand term “hassling” (see Schram

(2021)), but in the nuclear deterrence, these limited actions could be a war using everything

besides strategic nuclear weapons. We will assume that hassling costs could be positively or

negatively correlated with the costs of the escalated conflict. In the nuclear context, if an

actor is more capable within or more willing to risk a strategic nuclear conflict, this actor

could also be more or less willing to engage at lower levels as well, with the specific empirical

context determining the direction (more on this point below).

For ease, we present another stylized example of this more generalized setting. We keep the

game very similar: Nature still sets D’s private type, C still chooses to transgress or not,

and D still responds to this transgression. The main difference is that here D responds to C

transgressing with war or one of two hassling levels, h1 and h2 (rather than b1 and b2). These

hassling actions still generate political benefits through VD and still generate autonomous

risk through R, which (we assume) are now functions of hi; what’s fundamentally new here

is that D’s hassling actions can have costs that are a function of D’ type. We will denote

these costs as K(hi, θ).

We summarize the new payoffs to this game in Table 2.

θ D’s Payoff θ̄ D’s Payoff C’s Payoff

C does not transgress 1 1 0

C transgresses,

D selects hi

R(hi)WD(θ)−K(hi, θ)+

(1−R(hi))VD(hi)

R(hi)WD(θ̄)−K(hi, θ̄)+

(1−R(hi))VD(hi)

R(hi)WC+(1−

R(hi))(1− VD(hi))

C transgresses,

D goes to war

WD(θ) WD(θ̄) WC

Table 2: Contest of capabilities payoffs.

This new framing allows us to consider how capabilities matter in the brinkmanship setting.
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0, 1
t = 0

0.52,−0.085

h1

0, 0.04

h2

−1,−0.3

war

t = 1

θ = θ

0.52, 0.275

h1

0, 0.18

h2

−1,−0.1

war

t = 1

0, 1
t = 0

θ = θ̄

Nature

C C

D D

Figure 2: A Contest of Capabilities: Greater resolve (θ) implies a lower likelihood of war.

C’s payoffs are listed first. Note here that θ̄ has greater wartime payoffs. In equilibrium, C
will transgress (t = 1), θ D’s will select bargaining action b1, and θ̄ D’s will select bargaining
action b2. Parameter values are R(h1) = 0.05, R(h2) = 0.2, VD(h1) = 0.4, VD(h2) = 0.75,
WD(θ) = −0.3, WD(θ̄) = −0.1, WC = −1, Pr(θ = θ̄) = 0.5, KD(h1, θ) = 0.45, KD(h1, θ̄) =
0.1, KD(h2, θ) = 0.5, KD(h2, θ̄) = 0.4.

In the previous stylized example, getting a better settlement offer (choosing b2 rather than

b1) was analogous to being willing to pull a lever that generates better settlement payoffs at a

greater stochastic risk. In practice, within crises, attaining a better settlement outcome may

require conducting costly actions—actions like arming rebels, implementing or bypassing

a blockade, or undertaking limited military actions. Here, choosing h2 over h1 generates

different political settlements VD(hi), different levels of autonomous risk R(hi), and different

outright costs K(hi, θi).

To illustrate what these new costs mean for equilibrium outcomes, we offer a numerical

parameterization of the contest of capabilities game. This is Figure 2.

In the equilibrium here, the more resolved types go to war less. Why? Under the selected

parameters, war is bad for D. Conditional on the game reaching D’s decision node, both

types of D choose between h1 and h2. Note that h2 is more productive than h1 (because

VD(h1) = 0.4 and VD(h2) = 0.75), but h2 comes both with greater autonomous escalation

risk (R(h1) = 0.05 and R(h2) = 0.2) and greater inherent costs than h1. For type θ̄ D’s,

11



selecting h2 is quite costly relative to h1 (because KD(h1, θ̄) = 0.1 and KD(h2, θ̄) = 0.4).

This cost structure is enough to incentivise more resolved type θ̄ D’s to select h1 (the less

risky option) in equilibrium. And, for type θ D’s, selecting h2 is more costly than h1, but

not by much (because KD(h1, θ) = 0.45 and KD(h2, θ) = 0.5). This cost structure for less

resolve type θ D’s is enough to incentivise the less resolve type to select h2 (the more risky

option) in equilibrium. Together, despite type θ̄ D’s being (relatively) better at war and

taking more aggressive hassling actions, type θ̄ D’s will engage in lower-levels of hassling and

incur lower risks of war than the less resolved type θ D’s.

The equilibrium in the contest of capabilities game is surprising: here the more resolved

actors are more restrained. Prime facie, our treatment of resolve here seems natural: relative

to less resolved types, the more resolved actor both does better in war and does better in

conducting more aggressive hassling actions. But critically, resolve affects payoffs at all

hassling levels; the counterintutive equilibrium behavior is driven by type θ̄ D’s doing so

much better at the lowest levels of hassling and type θ D’s incurring similar costs to both

hassling levels.4 Put another way, with this hassling cost structure, high-types are willing

to tread lightly because it is so cheap for them to do so; meanwhile, low-types incur similar

costs to both hassling actions, so they might as well take the action that generates more

political benefits. We offer a general characterization of when this equilibrium phenomena

occurs in subsection 4.1.

The two models we have presented here are deliberately sparse, so as to illustrate the simplest

possible contests of nerves and contests of capabilities settings. Because these models lack

many important elements of crisis bargaining and deterrence theory, such as pre-negotiation

signaling and incentives to misrepresent, one might wonder whether the lessons we have

drawn from them would carry over to richer, more realistic settings. To identify broad

regularities in both classes of models, we employ the game-free methodology of Banks (1990)
4We will discuss this further, but formally, we are describing the K(hi, θ) function as exhibiting increasing

differences.
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and Fey and Ramsay (2011), identifying properties that arise from foundational requirements

of equilibrium rather than idiosyncratic features of any given game tree. We find, in fact, that

the intuitive relationship between resolve and war risk in Figure 1 holds in every equilibrium

of every game within the contests of nerves framework. And, we find that the counterintuitive

relationship between resolve and war risk in Figure 2 can emerge in a wide range of games

in the contests of capabilities setting.

2 Model Framework

To model contests of capabilities, we extend the formal definition of flexible-response crisis

bargaining games developed by Kenkel and Schram (2024). A contest of capabilities is a

game between a Challenger C and a Defender D, who are in a crisis over a prize whose

value is normalized to 1.5 The two sides bargain over the division of the prize. In the

course of bargaining, each side may take costly low-level actions to influence the outcome

of negotiations. What’s novel here—and not considered in Kenkel and Schram (2024)—is

that D’s low-level action may generate a risk of accidental escalation to full-scale war.6 If C

and D do not agree on a negotiated settlement, then war occurs for certain. D has private

information about its war payoff, which creates a friction that may result in bargaining

failure in equilibrium.

2.1 Contests of Capabilities

The timing of a contest of capabilities is as follows. At the start of the game, Nature draws

D’s type θ from a commonly known distribution whose CDF is Fθ and whose support is

Θ ⊆ R. Only D observes Nature’s choice. The two players select bargaining strategies

bC ∈ BC and bD ∈ BD. Our analysis is agnostic as to the shape of the bargaining protocol.
5In section 5 below, we consider an alternative formulation where D’s valuation of the prize is private

information that varies across private types.
6The flexible-response crisis bargaining games studied by Kenkel and Schram (2024) are the special case

of contests of capabilities in which this risk is identically zero.
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Depending on the particular game form, these strategies might be simple proposals and

responses, as in an ultimatum game, or more complex plans of offers and counteroffers.

Alongside these baseline bargaining strategies, each player may take a costly action that

directly shifts the payoffs from negotiations—and, in D’s case, may generate a heightened

risk of accidental escalation to war. We call C’s action a “transgression” t ∈ T ⊆ R+ and

D’s “hassling” h ∈ H ⊆ R+.

The players’ bargaining strategies determine whether the negotiation succeeds or fails. For

any given game form g, there is a function πg : BC ×BD → [0, 1] that describes the probabil-

ity of agreement (i.e., neither player deliberately choosing war) given the players’ bargaining

strategies. In case of agreement, C pays a cost KC(t) ≥ 0 (increasing in t) for its transgres-

sions, and D pays a potentially type-dependent cost KD(h, θ) ≥ 0 (increasing in h) for its

hassling.7 In this case, the probability of accidental escalation to war is a strictly increasing

function of D’s hassling, denoted R(h) ∈ [0, 1]. We treat the costs of transgression and

hassling, as well as the risk of accidental escalation, as underlying primitive features of the

strategic interaction—not as features of a single particular game form g. If there is no acci-

dental escalation to war, the players receive V g
C (t, h, bC , bD) and V g

D(t, h, bC , bD) respectively.

Unlike the cost and risk functions, these are specific to a game form.

Like earlier game-free analyses of crisis bargaining (Fey and Ramsay 2011; Fey and Kenkel

2021; Kenkel and Schram 2024), we assume that both states have the option to unilater-

ally force a conflict. Formally, this amounts to assuming there exists bwar
C ∈ BC such that

πg(bwar
C , bD) = 0 for all bD ∈ BD, as well as an analogous bwar

D ∈ BD. Reflecting the anarchic

nature of international politics, this assumption ensures that neither state can be forced to

accept a settlement that would leave it worse off than fighting.
7Because we conceptualize accidental escalation as arising from the coercive instrument itself, we assume

these costs are paid even if accidental escalation occurs. For example, if a conventional war ends in an
accidental nuclear exchange, the conventional war still carries costs (as was similarly formalized in Powell
(2015)). Consequently, both players would prefer deliberate war—avoiding the costs of the low-level actions—
over an agreement with a near-certain chance of accidental escalation.
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The players’ baseline war payoffs are solely a function of D’s type, not their bargaining

actions or low-level responses (see section 5 for an alternate treatment). We order the

Defender’s type space so that higher types are more resolved, i.e., the Defender’s baseline

war payoff function WD(θ) is a strictly increasing function of θ. Meanwhile, the Challenger’s

baseline war payoff WC(θ) is a non-increasing function of θ. If war occurs deliberately due

to bargaining failure, then the players receive WC(θ) and WD(θ). If war occurs accidentally

due to hassling-induced escalation, then they receive WC(θ)−KC(t) and WD(θ)−KC(h, θ).

Notice that transgressions and hassling are the only bargaining actions that may affect war

payoffs, and they do so only for accidental escalation and only via the cost functions.

The Challenger’s expected utility, given the bargaining strategies and the Defender’s type,

is given by the function

ug
C(t, h, bC , bD | θ) = πg(bC , bD)︸ ︷︷ ︸

agreement

 no escalation︷ ︸︸ ︷
[1−R(h)]V g

C (t, h, bC , bD)+

accidental escalation︷ ︸︸ ︷
R(h)WC(θ)−KC(t)


+ [1− πg(bC , bD)]︸ ︷︷ ︸

disagreement

WC(θ).

Similarly, the Defender’s expected utility function is

ug
D(t, h, bC , bD | θ) = πg(bC , bD)

[
[1−R(h)]V g

D(t, h, bC , bD) +R(h)WD(θ)−KD(h, θ)
]

+ [1− πg(bC , bD)]WD(θ).

To close the definition of contests of capabilities, we place some additional assumptions on the

model primitives. First, we assume that either player may refrain from low-level responses

at no cost: 0 ∈ H∩T , KC(0) = 0, and KD(0, θ) = 0 for all θ ∈ Θ. Second, we assume there

is no risk of accidental escalation in the absence of hassling: R(0) = 0. Third, without loss

of generality, we let WD(θ) = θ in the remainder of the analysis.
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2.2 Game-Free Analysis

Our goal is to characterize patterns in the equilibria of contests of capabilities that hold

across all game forms with the same underlying primitives, rather than being specific to

a particular bargaining protocol (e.g., ultimatum game, alternating offers, etc.). Table 3

divides the model components into the primitive components and those that are specific to a

particular game form. We will draw conclusions about the equilibrium outcomes of contests

of capabilities solely as a function of the primitive components listed in the left-hand column.

To this end, we adopt the mechanism design methodology of prior game-free analyses of crisis

bargaining (Banks 1990; Fey and Ramsay 2009, 2011; Fey and Kenkel 2021; Liu et al. 2021;

Kenkel and Schram 2024).

Underlying primitives
D’s type space: Θ
War payoffs: WC(·), WD(·)
Low-level responses available: T , H
Cost functions: KC(·), KD(·)
Escalation risk: R(·)

Specific to game form
Bargaining actions: BC , BD

Actions → bargaining success: πg(·)
Actions → prize division: V g

C (·), V
g
D(·)

Table 3: Classification of model components for a contest of capabilities.

As in similar analyses of models with one-sided incomplete information (e.g., Banks 1990;

Fey and Kenkel 2021; Kenkel and Schram 2024), we characterize equilibrium outcomes for

the player with private information, namely the Defender. Let (t∗, h∗(θ), b∗C , b
∗
D(θ)) be an

equilibrium of a game form g, where D’s strategies are written as functions of θ as different

types may take different actions. We summarize the equilibrium via three functions of D’s

type. The first is the equilibrium probability of agreement for each Defender type:

π(θ) = πg(b∗C , b
∗
D(θ)).

The second is the equilibrium amount of hassling, conditional on an agreement, for each

Defender type:

h(θ) = h∗(θ).
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The third is the equilibrium division of spoils going to the Defender, conditional on an

agreement and no accidental escalation to war, for each type:

VD(θ) = V g
D(t

∗, h∗(θ), b∗C , b
∗
D(θ)).

We refer to these three functions (π(·), h(·), VD(·)) jointly as a direct mechanism. Rather

than work with the complex set of all equilibria of all game forms, we will work with the set

of direct mechanisms for contests of capabilities.

Given a direct mechanism, we can calculate the expected utility to each type of Defender as

follows:

UD(θ) = π(θ) [(1−R(h(θ)))VD(θ) +R(h(θ))θ −KD(h(θ), θ)] + (1− π(θ))θ.

Equally importantly, the direct mechanism gives us all we need to know to determine the

payoff one Defender type would receive by deviating to another type’s bargaining strategy.

Consider a Defender whose true type is θ, but who mimics the bargaining strategy of another

type θ′. This type receives the same lottery over agreement versus disagreement (probability

π(θ′) of agreement) and the same risk of accidental war in case of agreement (probability

R(h(θ′))) as the type it is mimicking. Additionally, if there is agreement and no accidental

war, the mimicking type receives the same bargaining spoils, VD(θ
′). But there are two key

differences between the mimic’s payoff and UD(θ
′). First, in case of war (whether accidental

or deliberate), the mimic receives its true private value θ—it does not become stronger or

weaker on the battlefield just by adopting the bargaining strategy of a different type. Second,

in case of agreement, the type-dependent component of the mimic’s hassling cost reflects its

true type; i.e., the mimic pays KD(h(θ
′), θ). Altogether, then, the expected utility to type θ

for adopting the bargaining strategy of type θ′ is

ΦD(θ
′ | θ) = π(θ′) [(1−R(h(θ′)))VD(θ

′) +R(h(θ′))θ −KD(h(θ
′), θ)] + (1− π(θ′))θ.
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A direct mechanism is incentive compatible if no Defender type would strictly benefit from

mimicking the bargaining strategy of a different type. Formally, the incentive compatibility

condition is

UD(θ) ≥ ΦD(θ
′ | θ) for all θ, θ′ ∈ Θ. (IC)

The incentive compatibility condition is closely related to the equilibrium requirements of

Bayesian games. Our game-free analysis depends critically on the revelation principle artic-

ulated by Myerson (1979): for every Bayesian Nash equilibrium of a Bayesian game, there

exists a payoff-equivalent direct mechanism that is incentive compatible. Therefore, if some

claim holds for all incentive compatible direct mechanisms for contests of capabilities, then

the same claim is true for all equilibria of such contests. By analyzing the set of incentive

compatible direct mechanisms, we can derive necessary conditions for equilibrium behavior

without having to solve any specific game form.

In line with Fey and Ramsay (2011) and the subsequent mechanism design literature, we

also impose a voluntary agreements condition—what economists would call a participation

or individual rationality constraint—on the set of direct mechanisms we consider. Voluntary

agreements holds when no Defender type is worse off than it would be from deliberately

fighting:

π(θ) [(1−R(h(θ)))VD(θ) +R(h(θ))θ −KD(h(θ), θ)] ≥ π(θ)θ for all θ ∈ Θ. (VA)

Formally, voluntary agreements is a consequence of our assumption that both players have

a bargaining action available that guarantees war. Substantively, this condition reflects

the anarchic state of international politics, in which all agreements must be self-enforcing.

Voluntary agreements hold trivially for any type that deliberately chooses war for certain,

i.e., for which π(θ) = 0. Additionally, if we have π(θ) = 0 for at least one Defender type,

then incentive compatibility implies voluntary agreements.
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3 Contests of Nerves

We conceptualize a contest of nerves as a special case of a contest of capabilities, in which all

Defender types have the same access to an instrument that generates exogenous escalation

risks. In contests of nerves, Defender types may vary in their resolve—their expected value

of fighting, and thus their willingness to risk war in order to receive a particular settlement

at the bargaining table—but no type has an advantage over any other at pulling the levers

that generate risk. In its simplest form, the risk of accidental war can be thought of as

a pure brinkmanship measure, akin to rocking the boat in Schelling (1966, 90-91). This

pure brinkmanship dynamic is formalized in models like Nalebuff (1986), Powell (1988), and

Powell (1990).8 Additionally, the contests of nerves framing can also describe settings where

lower-levels actions may be inefficient, so long that these inefficiencies are uncorrelated with

private type. Also, as discussed in section 5, this framework closely relates to the model in

Powell (2015).

Formally, we define a contest of nerves as one in which the cost of each feasible low-level

choice is constant across Defender types. In a contest of nerves, there exists a non-decreasing

function κD : H → R+ such that

KD(h, θ) = κD(h) for all h ∈ H and θ ∈ Θ.

This includes as a special case “pure brinkmanship” scenarios, in which all types can generate

accidental war risk costlessly: κD(h) = 0 for all h ∈ H (like in Nalebuff (1986) and Powell

(1988). When the Defender’s private information is about its war payoff, the distinction

between the pure brinkmanship model and the contest of nerves turns out to be essentially
8Our framing differs from these models in our treatment of “resolve,” which only depends on D’s escalated

war payoff. For example, in Powell (1988), resolve is a function of war payoffs, the payoffs from prevailing
in the crisis, and the payoffs from conceding in the crisis; we choose a simpler treatment of resolve that does
not rely on factors like the payoffs from dropping out of a crisis, which, in the bargaining setting, may be
endogenous to the Defender’s war payoff.
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immaterial.9

Contests of nerves exhibit essentially the same patterns of behavior as in ordinary crisis bar-

gaining games, where there are no low-level policy alternatives between peaceful settlement

and all-out war. When accounting for both of the possible paths to conflict—deliberate war

or accidental escalation—more resolved types of the Defender are more likely to end up at

war in equilibrium. Additionally, more resolved types have higher equilibrium payoffs. The

following proposition states these claims formally as properties of incentive compatible direct

mechanisms for contests of nerves.10

Proposition 1. In any equilibrium of a contest of nerves, the total probability of war and the

Defender’s equilibrium utility weakly increase with the Defender’s resolve: if θ′ < θ′′, then

π(θ′)[1−R(h(θ′))] ≥ π(θ′′)[1−R(h(θ′′))] and U(θ′) ≤ U(θ′′).

Proposition 1 holds because contests of nerves are, in fact, equivalent to ordinary crisis

bargaining games at a deep level. Because the cost of the low-level option does not differ

across types, any type that mimics the bargaining strategy of θ′ receives exactly the same

payoff in case of a peaceful outcome, namely VD(θ
′) − κD(h(θ

′)). This equivalence of set-

tlement payoffs across types means that the monotonicity results from Banks (1990) apply

to contests of nerves, so higher types of the Defender are more likely to go to war and have

greater equilibrium expected utilities. By contrast, in the more general class of contests of

capabilities that we study below, different Defender types might yield different payoffs from

the same bargaining strategy, even conditional on the interaction ending peacefully. That is

because the costs of the low-level policy may differ across types, leading to different overall

settlement values under which the Banks (1990) results no longer apply (see Kenkel and

Schram 2024).
9The same is not necessarily true when the Defender’s private information concerns its prize valuation;

see section 5 below.
10All proofs appear in Appendix A.
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When full-scale war is sufficiently destructive, such as a nuclear exchange would be, it is

plausible to suppose neither side would ever deliberately initiate a conflict (Brodie 1966;

Schelling 1966; Powell 1990). In this case, we can obtain even stronger results about the

relationship between the Defender’s private resolve and equilibrium choices. Specifically,

more resolved types engage in more brinkmanship and receive more favorable settlements at

the bargaining table when the game ends peacefully.

Corollary 1. In any equilibrium of a contest of nerves, if war never occurs deliberately

(π(θ) = 1 for all θ), then the probability of accidental war and the Defender’s settlement

value weakly increase with the Defender’s resolve: if θ′ < θ′′, then R(h(θ′)) ≤ R(h(θ′′)) and

VD(θ
′) ≤ VD(θ

′′).

Altogether, in a contest of nerves in which no Defender type has a particular advantage

or disadvantage at generating accidental war risk, outcomes are determined by resolve in a

predictable way. Greater resolve implies a greater total risk of war, including a greater risk of

accidental war when neither player would ever deliberately opt into conflict. But as we show

below, this stark pattern does not necessarily hold in more general contests of capabilities,

where we consider accidental war risk a byproduct of low-level policy responses whose cost

or effectiveness is related to the Defender’s resolve.

4 Contests of Capabilities

In the contest of capabilities framework, the Defender’s private willingness to go to war is

related to their ability or willingness to use limited instruments. This creates a potential new

tradeoff that affects the Defender’s equilibrium choices. Types may vary in their preferences

for lower-level conflict not only due to the risk of full-scale war that these options generate,

but also because of differences in their direct costs for using these instruments. Consequently,

even when full-scale war never occurs on purpose, it is no longer certain that more resolved
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types take on a higher risk of accidental conflict.

Throughout this section, we restrict attention to direct mechanisms in which each Defender

type is either certain to agree or certain to go to full-scale war: π(θ) ∈ {0, 1} for all θ ∈ Θ.

This set of mechanisms corresponds to pure-strategy equilibria of contests of capabilities in

which Nature’s only moves are the initial assignment of the Defender’s type and the risk

of war R(h) generated by the Defender’s low-level policy choice (see Fey and Kenkel 2021).

Given such a mechanism, we can partition the type space into those that reach agreement

(with possible risk of accidental conflict) and those that deliberately fight a war: Θ = Θ1∪Θ0,

where Θ1 = {θ ∈ Θ | π(θ) = 1} and Θ0 = {θ ∈ Θ | π(θ) = 0}. We relax this assumption,

allowing for equilibria in which some Defender types mix, in subsection 4.3 below.

4.1 Probability of Accidental War

Unlike in the special case of the contest of nerves analyzed above, the probability of accidental

war need not increase with the Defender’s resolve in a contest of capabilities. To see why,

consider the tradeoff between low and high hassling, and how it varies with the Defender’s

resolve. First, there will be a difference in the Defender’s settlement value if accidental war

does not occur.11 The Defender’s resolve is immaterial to the value of this difference. Second,

higher hassling generates a greater risk of accidental conflict. This is the effect at the root

of Corollary 1 above, leading more resolved types to be more tolerant of greater hassling.

But now there is a third component to the tradeoff: the marginal cost of the higher value of

hassling may differ with the Defender’s resolve. In practical terms, some Defenders may be

more or less willing to conduct low-level competition depending on their high-level resolve;

for example, if a Defender is more hawkish and willing to risk a nuclear exchange, then

this Defender could plausibly also be more willing to absorb the costs from a more expansive

conventional conflict. Naturally, we cannot characterize the relationship between resolve and
11Intuitively, one might expect more hassling to yield more favorable terms. In fact, additional assumptions

are required to guarantee this is the case. See Kenkel and Schram (2024).

22



equilibrium behavior without accounting for these marginal costs—and how they compare

to the increase in the risk of accidental war.

If the marginal cost of hassling decreases with the Defender’s resolve, then it is straightfor-

ward to see that more resolved types will run a greater risk of accidental war. In this case,

compared to a less resolved Defender, a more resolved type gets the same benefit in case the

agreement holds, is better off in case accidental war occurs, and pays less to go from low

hassling to high hassling.

If instead more resolved Defender types face higher marginal costs of hassling (e.g., because

investments in capabilities for total war crowd out the resources for lower-level instruments),

then the tradeoff is harder to resolve. More resolved types are still better able to handle the

risk of accidental war, but now they must pay more to demonstrate this resolve through low-

level conflict. Ultimately, equilibrium behavior here comes down to the relative magnitude of

(a) the effect of Defender resolve on the marginal cost of hassling and (b) the effect of hassling

on the risk of accidental war. If the increase in the low-level instrument does not generate

much risk, then we see the opposite pattern from the war of nerves, with more resolved

Defenders investing less in low-level conflict and thus facing lower odds of accidental war.

The following proposition states sufficient conditions for the equilibrium probability of acci-

dental war to increase or decrease with the Defender’s resolve among all types that reach an

agreement. The left-hand side of the equations in the proposition is, in essence, the effect of

resolve on the marginal cost of greater hassling. The right-hand side is the effect of greater

hassling on the risk of accidental conflict, weighted by the difference in war payoff between

the more resolved and the less resolved type.

Proposition 2. Consider an equilibrium of a contest of capabilities.
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(a) The probability of accidental war weakly increases with the Defender’s resolve if

[KD(h
′′, θ′′)−KD(h

′, θ′′)]− [KD(h
′′, θ′)−KD(h

′, θ′)] < [R(h′′)−R(h′)](θ′′ − θ′) (1)

for all h′, h′′ ∈ h(Θ1) and θ′, θ′′ ∈ Θ1 such that h′ < h′′ and θ′ < θ′′.

(b) The probability of accidental war weakly decreases with the Defender’s resolve if

[KD(h
′′, θ′′)−KD(h

′, θ′′)]− [KD(h
′′, θ′)−KD(h

′, θ′)] > [R(h′′)−R(h′)](θ′′ − θ′) (2)

for all h′, h′′ ∈ h(Θ1) and θ′, θ′′ ∈ Θ1 such that h′ < h′′ and θ′ < θ′′.

Equation 1 and Equation 2 are closely related to the single-crossing conditions that often arise

in mechanism design and related economic settings (Milgrom and Shannon 1994; Ashworth

and Bueno de Mesquita 2006). If KD has global decreasing differences—i.e., the increase

in cost between any two levels of hassling is always smaller for more resolved types—then

Equation 1 must hold, and the probability of accidental war must behave as it does in a

contest of nerves. On the other hand, if KD has global increasing differences, then accidental

war risks may still increase with resolve; a slim increase in marginal costs with θ is not enough

to make Equation 2 hold.12

The key takeaway from Proposition 2 is that the direction of the relationship between resolve

and accidental war depends on how resolve affects the marginal cost of hassling versus how

hassling affects the risk. Can we say anything stronger about the shape of this relationship,

such as how quickly the level of low-level activity varies with the Defender’s resolve? Our

next result, Proposition 3, answers this question in the negative. As long we can satisfy
12KD need not have global increasing or decreasing differences. For example, consider the type space

Θ = [0, 1], hassling space h = {0, 1, 2}, and cost function KD(0, θ) = 0, KD(1, θ) = a+ bθ (where 0 < a < 1
and 0 < b < 1 − a), KD(2, θ) = 1. This function has increasing differences on {0, 1}, decreasing differences
on {1, 2}, and constant differences on {0, 2}. Consequently, if the effect of hassling on the risk of accidental
war is strong enough, there may simultaneously exist IC mechanisms with increasing hassling (on {1, 2})
and decreasing hassling (on {0, 1}).
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the conditions on marginal effects set out in the previous proposition, we can design a game

form to rationalize virtually any pattern of hassling.

To obtain the following result, we must impose slightly stronger technical conditions than

in the baseline analysis. We assume a continuous type space, Θ = [θ, θ], and set of feasible

low-level actions, H = [0, h]. We also assume that R is continuously differentiable and that

KD is twice differentiable. Together we refer to these as the differentiability assumptions.

Proposition 3. Suppose the differentiability assumptions hold.

(a) Let h∗ be any absolutely continuous, weakly increasing function that satisfies

∂2KD(h, θ)

∂h∂θ
≤ R′(h) for all h ∈ h∗(Θ), θ ∈ Θ.

There is an incentive compatible direct mechanism in which π(θ) = 1 and h(θ) = h∗(θ)

for all θ ∈ Θ.

(b) Let h∗∗ be any absolutely continuous, weakly decreasing function that satisfies

∂2KD(h, θ)

∂h∂θ
≥ R′(h) for all h ∈ h∗∗(Θ), θ ∈ Θ.

There is an incentive compatible direct mechanism in which π(θ) = 1 and h(θ) = h∗∗(θ)

for all θ ∈ Θ.

Though the formal statement is technical, this is a remarkable result. Proposition 3 tells us

that the primitive features of the strategic environment—i.e., the players’ types, the low-level

actions available, the costs of those actions, and the risk of accidental war they generate—

only determine whether the equilibrium degree of hassling (and accidental war) increases or

decreases with the Defender’s resolve. The precise magnitude of the increase or decrease

may be quite specific to a particular bargaining game form. For example, suppose that KD
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has global decreasing differences (more resolved types face lower marginal costs of hassling),

so that ∂2KD(h,θ)
∂h∂θ

< 0 for all h and θ. Then Proposition 3(a) implies that every increasing

function h∗(θ) (subject to a continuity restriction) can be supported as equilibrium behavior.

Whether there is a gradual increase, a sudden large spike, or no change at all depends only on

the contingent features of the bargaining game, not on the underlying military fundamentals.

4.2 Occurrence of Deliberate War

We now consider how the choice of deliberate war varies with the Defender’s resolve. By

definition, the payoff from war is greater for more resolved types, increasing their incentive

to opt for war. In the absence of low-level alternatives, this incentive results in a monotone

increasing relationship between resolve and deliberate war (Banks 1990). However, in a more

general setting, the effect of resolve on deliberate war depends on its relationship with the

cost of low-level policy options. In particular, if more resolved types can also use low-level

conflict more cheaply or effectively, then they may opt for limited conflict instead of war

(Kenkel and Schram 2024).

While the relationship between resolve and hassling costs is important, the risk of accidental

war from limited conflict also plays a role in the decision to fight war deliberately. If a limited

policy instrument generates only an infinitesimal risk of accidental war, then the types with

the most incentive to opt for it will be whichever ones have the lowest costs for that level of

hassling. At the other extreme, if limited conflict carries an enormous risk of escalation, then

resolve rather than costs will be the determining factor in the preference of each Defender

type.

The following proposition summarizes the relationship between Defender resolve and the

occurrence of deliberate war in the equilibria of contests of capabilities. If more resolved

types pay higher (absolute) costs for low-level policy options, then less-resolved types settle

and more-resolved types fight. However, when greater resolve also entails greater willingness
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or capability to hassle, then we must compare the magnitude of the cost effect to the degree

of accidental war risk. If resolve only slightly reduces the hassling costs, or if the risk of

accidental escalation is low, then we still have less-resolved types agreeing and more-resolved

types fighting. But we yield the opposite pattern if hassling costs plunge quickly with θ or

if escalation risks are high.

Proposition 4. Consider an equilibrium of a contest of capabilities. Let Θ1 denote the set

of types that reach an agreement in equilibrium: Θ1 ≡ {θ ∈ Θ | π(θ) = 1}.

(a) Less-resolved Defender types reach agreement and more-resolved types deliberately choose

war (i.e., closΘ1 = {θ ∈ Θ | θ ≤ θ̂} for some θ̂) if

KD(h
′, θ′)−KD(h

′, θ′′)

θ′′ − θ′
< 1−R(h′) (3)

for all h′ ∈ h(Θ1) and all θ′, θ′′ ∈ Θ such that θ′ < θ′′.

(b) Less-resolved Defender types deliberately choose war and more-resolved types reach

agreement (i.e., closΘ1 = {θ ∈ Θ | θ ≥ θ̂} for some θ̂) if

KD(h
′, θ′)−KD(h

′, θ′′)

θ′′ − θ′
> 1−R(h′) (4)

for all h′ ∈ h(Θ1) and all θ′, θ′′ ∈ Θ such that θ′ < θ′′.

We briefly note the technical similarities and differences between Proposition 2 (conditions for

the probability of accidental war to be monotone in the Defender’s resolve) and Proposition 4.

Both results work with differences in the cost function, KD(·, θ′′) − KD(·, θ′), as well as in

war payoffs, θ′′ − θ′. Additionally, the risk of accidental war plays a role in both results.

The probability of accidental war characterized in Proposition 2 is ultimately determined

by a second-order comparison: the effect of Defender type on the marginal cost of hassling,
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compared to the marginal effect of hassling on escalation risk. By contrast, the occurrence of

deliberate war characterized here in Proposition 4 depends more on first-order comparisons:

the effect of Defender type on the absolute cost of hassling, versus the absolute level of

escalation risk.

4.3 Probabilistic Deliberate War

Our baseline analysis concerns equilibria in which every Defender type either reaches agree-

ment for certain or fights a deliberate war for certain. In such equilibria, the Defender can

generate a limited risk of war only through choosing a corresponding level of hassling, not

through mixed strategies. We now relax this restriction to consider equilibria in which we

may have π(θ) ∈ (0, 1) for some (or all) types of the Defender.

When we allow for a probabilistic occurrence of deliberate war, we find exceptions to some

of the patterns characterized in our baseline analysis. For example, consider an environment

in which the effect of resolve on hassling cost is negative (Equation 3 holds), and this effect

becomes larger in magnitude at higher degrees of hassling (Equation 1 holds). Under these

conditions, Proposition 2 would lead us to conclude that the probability of accidental war

increases with the Defender’s resolve, and we would infer from Proposition 4 that the same is

true for the occurrence of deliberate war. However, these patterns are specific to equilibria in

which the probability of deliberate war is exactly 0 or 1 for each Defender type. Proposition 5

below shows that the probability of accidental escalation may decrease with Defender resolve

when the probability of deliberate war is locally increasing. Alternatively, if the probability

of accidental escalation increases quickly enough, then the probability of deliberate war may

decrease with Defender resolve.

For ease of characterization, we impose linearity assumptions that are even stronger than the

differentiability assumptions of Proposition 3 above. We assume Θ = [θ, θ] and H = [0, 1].13

13Because the cost function and war payoff space are arbitary in magnitude, the normalization h = 1 is
without loss of generality.
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Additionally, we assume the cost function and risk function are linear in hassling: there exist

a function k : Θ → R++ and a constant r > 0 such that KD(h, θ) = k(θ)h and R(h) = rh

for all θ ∈ Θ and h ∈ H. We also assume k is differentiable, and we denote k ≡ min k′(Θ)

and k ≡ max k′(Θ).

Proposition 5. Suppose the linearity assumptions hold and r − 1 < k ≤ k < r.

(a) Equation 1 and Equation 3 hold.

(b) Let π∗ be any absolutely continuous, weakly decreasing function such that π∗(θ) > 0 for

all θ ∈ Θ, and let h∗ be any absolutely continuous function that satisfies

dh∗(θ)

dθ
≥

1
r−k

− h∗(θ)

π∗(θ)
· dπ

∗(θ)

dθ

for all θ ∈ Θ at which h∗ and π∗ are differentiable. There is an incentive compatible

direct mechanism in which π(θ) = π∗(θ) and h(θ) = h∗(θ) for all θ ∈ Θ.

(c) Let π∗∗ be any absolutely continuous, weakly increasing function such that π∗∗(θ) > 0

for all θ ∈ Θ, and let h∗∗ be any absolutely continuous function that satisfies

dh∗∗(θ)

dθ
≥

1
r−k

− h∗∗(θ)

π∗∗(θ)
· dπ

∗∗(θ)

dθ

for all θ ∈ Θ at which h∗∗ and π∗∗ are differentiable. There is an incentive compatible

direct mechanism in which π(θ) = π∗∗(θ) and h(θ) = h∗∗(θ) for all θ ∈ Θ.

Though it is important to understand these baseline exceptions to the patterns characterized

in our main analysis, the takeaway here should not be that anything can happen. In sub-

stantively important contexts such as nuclear war where it is implausible that the Defender

would ever deliberately opt for war, we cannot obtain these exceptions to Proposition 2.

Additionally, the result here depends on the cost effect being in a tight range where it is
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small in magnitude. A larger negative or positive relationship between resolve and hassling

cost would tighten the set of patterns that can be sustained in equilibrium.

5 Resolve as Prize Value

The analysis above considers a class of models that treat the Defender’s resolve as their

war payoff. Here, we consider an alternate formulation, more in line with recent nuclear

brinkmanship models (e.g., Powell 2015; Schram 2024), in which the Defender’s private

resolve is represented by their value for the object at stake in the crisis. We are able to

show that this alternate formulation can share similarities with the contest of capabilities

framework, but, with some new model primitives (i.e. a option to quit and zero out), can

also introduce new “outbidding” behavior.

To motivate the analysis, consider a simple model of brinkmanship based on Powell (2015).14

C and D are in a crisis over a prize worth βC > 0 to C and βD > 0 to D. The prize is initially

controlled by D. C’s prize valuation is common knowledge, while D’s is private information

only known to D. The timing of the game is as follows:

1. Nature selects D’s valuation βD and reveals it to D.

2. C chooses a conventional arms level p ∈ [p, p].

3. D chooses a risk level r ∈ [0, r(p)], where r(p) ∈ (0, 1) for each p ∈ [p, p].

4. C may quit or continue with the challenge. If C quits, then C receives nothing and D

receives the full prize.
14There are three differences between the model here and that of Powell (2015). First, we rule out C’s

initial option to end the game immediately by accepting the status quo. Any equilibrium in which this occurs
involves no choices by D along the path of play, resulting in a trivial direct mechanism for our purposes.
The second, related difference is that we normalize the costs kC and kD to zero, as both are sunk (and thus
decision-irrelevant) once C opts not to accept the status quo. Third, we assume there is no baseline latent
risk, i.e., r(p) = 0 for all p. Our framework could be modified to incorporate non-zero baseline risk at the
cost of some additional notation; we omit this possibility here for clarity of exposition.
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C

Arms: p ∈ [p, p]

D

Risk: r ∈ [0, r(p)]

C

0
βD

Quit Challenge

D

βC

0

Quit

(1− r)pβC − rnC

(1− r)(1− p)βD − rnD

Fight

Figure 3: Game tree for the motivating model where the Defender’s type represents their
war payoff (based on Powell 2015).

5. If C continued with the challenge, D may quit or fight. If D quits, then C receives

and full prize and D receives nothing. If instead D fights, then with probability r a

nuclear war occurs and each player receives −ni < 0. Otherwise, C wins the prize with

probability p and D wins it with probability 1− p.

Figure 3 displays the game tree for this model of nuclear brinkmanship.

The baseline framework in section 2 captures some key features of this model, in particular

an unintentional risk of nuclear escalation. However, there are also some key differences. The

most visible is that D’s type now represents their prize valuation instead of their war payoff.

Additionally, even after D moves to generate a certain level of endogenous risk, either player

may “shut off” that risk by conceding the issue. In this section, we consider a generalized
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framework that captures the features of the model in Figure 3. We show that the payoff

structure in this new framework is essentially isomorphic to a special case in our original

contest of capabilities, but that the possibility of shutting off the risk may generate distinct

patterns in equilibrium outcomes. Nonetheless, certain outcome patterns can still arise only

when risk is generated by a costly political process for D, rather than a costless lever as in

the contest of nerves.

5.1 Direct mechanism

We consider a class of models with the same choice structure as in our baseline framework

(introduced in section 2): C and D each choose bargaining actions, including low-level re-

sponses, which determine the distribution of spoils and the risk of war. The primitives differ

from the baseline model in the following way:

• The war payoffs are fixed values −nC ,−nD < 0.

• The value of the prize for D is a private type, βD ∈ [β
D
, βD].

• The hassling cost function, which we now denote κD(h), is a function solely of hassling

and not of D’s type.

The change in the prize payoff structure necessitates a different definition of the direct

mechanism than in our baseline analysis. We now model the share of the prize received

by each type of D, via a function SD : [β
D
, βD] → [0, 1]. This may represent a share of

the prize garnered from negotiations, or from conventional conflict as in the Powell (2015)

model. Additionally, mirroring Powell (2015), we allow for the possibility that a state might

“quit,” ceding the prize to the other while zeroing out the risk of accidental war.15 We include

functions QC , QD : [β
D
, βD] → {0, 1} to capture these quitting outcomes. For simplicity in

the exposition, we restrict QC(βD)+QD(βD) ≤ 1; i.e., both states cannot simultaneously quit.
15We cannot fully capture this simply by setting h(βD) = 0 when a player quits, as D may incur costs of

hassling prior to either side quitting.
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To avoid trivialities, we restrict attention to mechanisms in which QC(βD) = QD(βD) = 0

implies SD(βD) ∈ (0, 1); i.e., we consider a state to have “quit” if it accepts a settlement

with no value. Finally, the assumption of strictly negative war payoffs implies that neither

side would start a nuclear war deliberately rather than quit, so we do not incorporate this

possibility into the mechanism.

The direct mechanism dictates the payoff to D type βD of reporting type β′
D. To save space

in writing out the reporting function, let S̄D(βD) denote the final share received by each type

of D, accounting for either state quitting:

S̄D(βD) ≡ QC(βD) + [1−QC(βD)−QD(βD)]SD(βD).

This gives us a reporting function of

ΨD(β
′
D | βD) = S̄D(β

′
D)βD −R(h(β′

D))nD − κD(h(β
′
D)).

[Need to look into the proofs and see whether quitting actually zeroes out the autonomous

risk, because this specification of the reporting function makes it look like the autonomous

risk stays no matter what]

5.1.1 Application to motivating model

Let us return to the variant of the Powell (2015) brinkmanship model portrayed in Figure 3

above. A pure strategy equilibrium of the game consists of the following quantities and

functions. C selects an arms level p∗. Each type of D responds to each possible arms level

p with a risk level r∗(p | βD). C decides whether to quit after observing arms and risk; let

q∗C(p, r) ∈ {0, 1} be an indicator for C’s choice to quit. Finally, if C does not quit, then each

type of D chooses whether to do so, denoted q∗D(p, r | βD) ∈ {0, 1}.

To adapt this model to our framework, we identify the “hassling” choice as D’s selected level
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of risk. The hassling space is thus H = [0, r̄(p̄)], with associated risk function R(h) = h and

cost function κD(h) = 0 (constant). Then given any equilibrium of the game, we can define

an equivalent direct mechanism as follows:

• Hassling level: Set h(βD) = r∗(p∗ | βD) for all βD.

• C quit: Set QC(βD) = q∗C(p
∗, r∗(p∗ | βD)) for all βD.

• D quit: Set

QD(βD) = [1− q∗C(p
∗, r∗(p∗ | βD))]q

∗
D(p

∗, r∗(p∗ | βD) | βD)

for all βD.

• Share of prize if neither quit: Set SD(βD) = 1− p∗ (constant) for all βD.

5.1.2 Incentive compatibility and participation constraints

As in the baseline analysis, any direct mechanism corresponding to an equilibrium must

satisfy the incentive compatibility condition,

ΨD(βD | βD) ≥ ΨD(β
′
D | βD) for all βD, β

′
D ∈ [β

D
, βD].

In the context of nuclear conflict, a direct mechanism may be incentive compatible yet sub-

stantively unlikely. For example, consider a direct mechanism in which QC(βD) = QD(βD) =

SD(βD) = 0 and h(βD) = h for all βD, where R(h) ≈ 1. This trivially satisfies incentive

compatibility, but seems unlikely to describe real-world crisis bargaining, as every type of D

risks a near-certain nuclear war in order to attain none of the disputed good.

To rule out this sort of implausible equilibrium outcome, we only consider direct mechanisms

that satisfy “participation” constraints ensuring that each state prefers the equilibrium over

quitting (and, in D’s case, not hassling). For D, the participation constraint amounts to each
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type garnering non-negative expected utility:

ΨD(βD | βD) ≥ 0 for all βD. (IR-D)

It is more complicated to define a participation constraint for C, as the information C has

when they decide to quit may vary across game forms. The weakest plausible participation

constraint for C is an ex ante constraint of non-negative expected utility:

E
[
S̄C(βD)βC −R(h(βD))nC

]
≥ 0, (IR-C)

where the expectation is taken over the prior distribution of βD and S̄C is defined analogously

to S̄D. At the other extreme is an ex post condition, stating that C yields non-negative

expected utility for all type realizations of D:

S̄C(βD)βC −R(h(βD))nC ≥ 0 for all βD. (IR-C′)

5.2 General results

In one sense, reformulating the type space as the prize value rather than as D’s war payoff

does not change its essential structure or features. Having a higher prize value is akin to

having lower war costs or hassling costs, in that it increases D’s willingness to run risks in

order to achieve a better result at the negotiating table. On its own, then, this reformulation

of the type space should not radically change the results of the analysis.

To justify this claim more formally, we can examine the structure of D’s payoff function

under the modified direct mechanism. A key property of Von Neumann-Morgenstern utility

functions is the invariance to affine transformations. If we divide the reporting function

Ψ(· | βD) by the prize value βD, we end up with a payoff function that looks akin to the one
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from our baseline model:

Ψ(β′
D | βD)

βD

= S̄D(β
′
D)︸ ︷︷ ︸

VD(θ)

−R(h(β′
D))

nD

βD︸︷︷︸
θ

− κD(h(β
′
D))

βD︸ ︷︷ ︸
K(h,θ)

.

The payoff structure thus should not cause any substantive difference from our baseline

contest of capabilities model. This logic is the basis of the next proposition, which states

that any equilibrium of the modified model in which neither state quits has an equivalent

representation in our original framework.

Proposition 6. In the model where D’s type is prize value, if QC(βD) = QD(βD) = 0 for

all βD, then the direct mechanism is isomorphic to a contest of capabilities in the baseline

framework in which Equation 1 is satisfied. If additionally κD(h(βD)) = 0 for all βD, then

it is isomorphic to a contest of nerves.

An equilibrium of the prize-value model in which neither state ever quits is, in this sense,

equivalent to a contest of capabilities that satisfies the decreasing differences condition,

Equation 1. Because D would never deliberately provoke war per our assumption that

−nD < 0, Proposition 2 then implies that the hassling level and the probability of accidental

war weakly increase with D’s prize value. Moreover, if risk is generated without any direct

cost to D, as in the example model based on Powell (2015), then Proposition 1 and Corollary 1

imply that D’s expected utility and settlement value also increase with βD. From this

standpoint, modeling resolve as prize value simply leads to a special (and in fact relatively

restrictive) case of the contest of capabilities.

However, Proposition 6 only covers the case in which neither player quits in equilibrium.

This rules out certain strategic behaviors related to brinkmanship, where D is prepared

to run a high risk of nuclear disaster that is not ultimately realized on the path of play

because C would find it intolerable. Once we allow for the possibility of quitting, we obtain
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a pattern of results that is potentially distinct from the contest of capabilities. Low types

of D quit, incurring no costs while receiving nothing. Medium types do not quit but also

do not induce C to quit, so any risks they generate are realized on the path of play. The

highest types prepare to run a high enough risk—at a strictly greater cost than all low and

medium types—to induce C to quit. Essentially, D here can “outbid” C’s tolerance for risk,

resulting D attaining the prize.

Proposition 7. In the model where D’s type is prize value, there exist β̃, β̂ ∈ [β
D
, βD] such

that:

(a) For all βD < β̃, QD(βD) = 1 and κD(h(βD)) = 0.

(b) For all βD ∈ (β̃, β̂), QC(βD) = QD(βD) = 0. h(βD) and SD(βD) are weakly increasing

on this interval of types.

(c) For all βD > β̂, QC(βD) = 1. There exists κ̂ such that κD(h(βD)) < κ̂ for all βD < β̂

and κD(h(βD)) = κ̂ for all βD > β̂.

In the general setting where type is prize value and the players have the option to quit,

we have a nonmonotone (∩-shaped) probability of accidental war as a function of D’s type.

This is true even though we saw above that the model effectively satisfies the decreasing

differences condition (Equation 1), which in our baseline model implied a non-decreasing

probability of accidental war among types that do not start a war deliberately.

The nonmonotonicity of the chance of nuclear accidents is a key feature of the model in

Schram (2024). But Proposition 7 also shows how it cannot arise in models like our example

based on Powell (2015), in which D can generate nuclear risk costlessly. Part (c) of the

proposition states that the cost incurred by types that induce C to quit must be strictly

greater than the costs incurred by types that quit or settle in equilibrium. This cannot

happen in a model with costless risk generation—unless all types of D induce C to quit,
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in which case the probability of accidental war is constant rather than nonmonotone. The

upshot is that the nature of the process that generates nuclear risk continues to matter even

when we consider a different conceptualization of resolve and allow states to zero out risk

by “quitting.” Key relationships between resolve and the risk of nuclear accidents arise only

when risk is generated by low-level policy options whose attractiveness or capability varies

across Defender types.

6 Conclusion

We analyze a class of crisis bargaining models in which states may employ limited policy

options short of full-scale war that nonetheless generate a risk of accidentally triggering such

a war. Using a mechanism design methodology that allows us to study all equilibria of all

such games, we find that their outcomes critically depend on the relationship between a

state’s private resolve and its willingness and/or ability to use these limited policy instru-

ments. If there is no relationship—i.e., if a state’s access to limited conflict is independent

of its willingness to engage in full-scale war—then we recover the traditional brinkmanship

pattern in which more resolved states engage in more risky limited conflict. However, when

the marginal cost of riskier limited policies increases quickly enough with a state’s resolve,

there are equilibria with the opposite pattern, in which the least resolved types are the

most likely to experience accidental escalation. Depending on the technology of limited

conflict and its relationship with a state’s war payoffs, different bargaining games may lead

to completely different patterns of accidental war, even with the same underlying military

fundamentals. Our results highlight the complexity of the strategic relationship between

resolve, conventional capabilities, and inadvertent escalation.
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A Proofs of Named Results

A.1 Proof of Proposition 1

Proposition 1. In any equilibrium of a contest of nerves, the total probability of war and the
Defender’s equilibrium utility weakly increase with the Defender’s resolve: if θ′ < θ′′, then
π(θ′)[1−R(h(θ′))] ≥ π(θ′′)[1−R(h(θ′′))] and U(θ′) ≤ U(θ′′).

Proof. We prove the result by showing that there is a payoff-equivalent direct mechanism
in an ordinary crisis bargaining game that satisfies the incentive compatibility conditions of
Banks (1990). For Banks (1990), a direct mechanism is defined by a function x : Θ → R
giving settlement values and a function p : Θ → [0, 1] giving the probability of war. Given
such a mechanism, the expected utility to type θ for mimicking the bargaining strategy of
type θ′ is given by

Φ̃D(θ
′ | θ) = p(θ′)θ + (1− p(θ′))x(θ′).

Now consider a direct mechanism for a contest of nerves that satisfies our incentive compat-
ibility condition, (IC), and define the following functions:

x(θ) = VD(θ)−
κD(h(θ))

1−R(h(θ))
,

p(θ) = 1− π(θ) [1−R(h(θ))] .
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For all θ, θ′ ∈ Θ, we have

Φ̃D(θ
′ | θ) = p(θ′)θ + (1− p(θ′))x(θ′)

= (1− [1−R(h(θ′))] π(θ′)) θ + π(θ′) [1−R(h(θ′))]VD(θ
′)− π(θ′)κD(h(θ

′))

= π(θ′) [(1−R(h(θ′)))VD(θ
′) +R(h(θ′))θ − κD(h(θ

′))] + (1− π(θ′))θ

= ΦD(θ
′ | θ).

Incentive compatibility of the original direct mechanism therefore implies incentive compat-
ibility of the Banks (1990) mechanism (x, p). The first claim of the proposition then follows
from Lemma 1 of Banks (1990), and the second follows from his Lemma 4.

A.2 Proof of Corollary 1

Corollary 1. In any equilibrium of a contest of nerves, if war never occurs deliberately
(π(θ) = 1 for all θ), then the probability of accidental war and the Defender’s settlement
value weakly increase with the Defender’s resolve: if θ′ < θ′′, then R(h(θ′)) ≤ R(h(θ′′)) and
VD(θ

′) ≤ VD(θ
′′).

Proof. The first claim is immediate from Proposition 1, setting π(θ′) = π(θ′′) = 1. To prove
the second claim, observe that the function κD

1−R
is weakly increasing in h, as κD and R are

both non-decreasing in h. Following the proof of Proposition 1, Lemma 2 of Banks (1990)
implies

VD(θ
′′)− VD(θ

′) ≥ κD(h(θ
′′))

1−R(h(θ′′))
− κD(h(θ

′))

1−R(h(θ′))
.

Because R is strictly increasing, R(h(θ′′)) ≥ R(h(θ′)) implies h(θ′′) ≥ h(θ′), so the RHS of
the above expression is non-negative.

A.3 Proof of Proposition 2

Proposition 2. Consider an equilibrium of a contest of capabilities.

(a) The probability of accidental war weakly increases with the Defender’s resolve if

[KD(h
′′, θ′′)−KD(h

′, θ′′)]− [KD(h
′′, θ′)−KD(h

′, θ′)] < [R(h′′)−R(h′)](θ′′ − θ′) (1)

for all h′, h′′ ∈ h(Θ1) and θ′, θ′′ ∈ Θ1 such that h′ < h′′ and θ′ < θ′′.

(b) The probability of accidental war weakly decreases with the Defender’s resolve if

[KD(h
′′, θ′′)−KD(h

′, θ′′)]− [KD(h
′′, θ′)−KD(h

′, θ′)] > [R(h′′)−R(h′)](θ′′ − θ′) (2)

for all h′, h′′ ∈ h(Θ1) and θ′, θ′′ ∈ Θ1 such that h′ < h′′ and θ′ < θ′′.

Proof. We will prove the first claim; the proof of the second is analogous. Take any θ′, θ′′ ∈ Θ1

such that θ′ < θ′′, and suppose h(θ′) > h(θ′′). To economize on notation in the remainder
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of the proof, define h′ ≡ h(θ′), V ′ ≡ VD(θ
′), and R′ ≡ R(h(θ′)); and let h′′, V ′′, and R′′ be

defined analogously. Incentive compatibility for θ′ implies

(1−R′)V ′ +R′θ′ −KD(h
′, θ′) ≥ (1−R′′)V ′′ +R′′θ′ −KD(h

′′, θ′),

which is equivalent to

(R′ −R′′)θ′ − [KD(h
′, θ′)−KD(h

′′, θ′)] ≥ (1−R′′)V ′′ − (1−R′)V ′.

Similarly, incentive compatibility for θ′′ implies

(1−R′′)V ′′ +R′′θ′′ −KD(h
′′, θ′′) ≥ (1−R′)V ′ +R′θ′′ −KD(h

′, θ′′),

which is equivalent to

(1−R′′)V ′′ − (1−R′)V ′ ≥ (R′ −R′′)θ′′ − [KD(h
′, θ′′)−KD(h

′′, θ′′)] .

Combining the incentive compatibility conditions and rearranging terms gives

[KD(h
′, θ′′)−KD(h

′′, θ′′)]− [KD(h
′, θ′)−KD(h

′′, θ′)] ≥ (R′ −R′′)(θ′′ − θ′).

Because h′ > h′′ and θ′′ > θ′, this implies that Equation 1 does not hold.

A.4 Proof of Proposition 3

The proof of the proposition follows a series of lemmas. The method of proof is similar to
other envelope theorem analyses (e.g., in Banks 1990; Kenkel and Schram 2024).

A.4.1 Envelope theorem

Lemma A.1. Suppose the differentiability assumptions hold. For any IC direct mechanism
in which all types settle, we have

UD(θ) = U(θ) +

∫ θ

θ

[
R(h(t))− ∂KD(h(t), t)

∂t

]
dt (A.1)

for all θ ∈ Θ.

Proof. (IC) implies UD(θ) = supθ′∈Θ ΦD(θ
′ | θ) for all θ ∈ Θ. The differentiability assump-

tions imply that ∂ΦD(θ′|θ)
∂θ

exists for all θ, θ′ ∈ Θ. Corollary 1 of Milgrom and Segal (2002)
then implies

UD(θ) = UD(θ) +

∫ θ

θ

∂ΦD(θ
′ | t)

∂t

∣∣∣∣
θ′=t

dt

= UD(θ) +

∫ θ

θ

[
R(h(t))− ∂KD(h(t), t)

∂t

]
dt
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for all θ ∈ Θ, as claimed.

A.4.2 Value of settlement

Lemma A.2. Suppose the differentiability assumptions hold, and consider a direct mecha-
nism in which π = 1. For all θ ∈ Θ, Equation A.1 is satisfied if and only if

VD(θ) =
U(θ)−R(h(θ))θ +KD(h(θ), θ) +

∫ θ

θ

[
R(h(t))− ∂KD(h(t),t)

∂t

]
dt

1−R(h(θ))
. (A.2)

Proof. Immediate from setting

(1−R(h(θ)))VD(θ) +R(h(θ))θ −KD(h(θ), θ) = UD(θ) +

∫ θ

θ

[
R(h(t))− ∂KD(h(t), t)

∂t

]
dt

and solving for VD(θ).

A.4.3 Global incentive compatibility

Lemma A.3. Suppose the differentiability assumptions hold. Consider a direct mechanism
in which π = 1, VD(θ) satisfies Equation A.2 for all θ ∈ Θ, and h is absolutely continuous.
For all θ ∈ Θ, ΦD(· | θ) is differentiable almost everywhere, with

∂ΦD(θ
′ | θ)

∂θ′
= h′(θ′)

[
R′(h(θ′))(θ − θ′)−

(
∂KD(h(θ

′), θ)

∂h
− ∂KD(h(θ

′), θ′)

∂h

)]
(A.3)

at each point of differentiability.

Proof. For all θ, θ′ ∈ Θ,

ΦD(θ
′ | θ) = (1−R(h(θ′)))VD(θ

′) +R(h(θ′))θ −KD(h(θ
′), θ)

= (1−R(h(θ′)))VD(θ
′) +R(h(θ′))θ′ −KD(h(θ

′), θ′)

+R(h(θ′))(θ − θ′)− [KD(h(θ
′), θ)−KD(h(θ

′), θ′

= UD(θ
′) +R(h(θ′))(θ − θ′)− [KD(h(θ

′), θ)−KD(h(θ
′), θ′)].

As R and KD are Lipschitz (via their continuous differentiability), absolute continuity of
h implies R(h(·)) and KD(h(·), ·) are absolutely continuous and thus differentiable almost
everywhere (Cobzaş, Miculescu and Nicolae 2019). Additionally, Lemma A.2 implies that
UD is absolutely continuous as well. Therefore, ΦD(· | θ) is differentiable almost everywhere,
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with

∂ΦD(θ
′ | θ)

∂θ′
= U ′

D(θ
′) +R′(h(θ′))h′(θ′)(θ − θ′)−R(h(θ′))− ∂KD(h(θ

′), θ)

∂h
h′(θ′)

+
∂KD(h(θ

′), θ′)

∂h
h′(θ′) +

∂KD(h(θ
′), θ′)

∂θ′

= h′(θ′)

[
R′(h(θ′))(θ − θ′)−

(
∂KD(h(θ

′), θ)

∂h
− ∂KD(h(θ

′), θ′)

∂h

)]
at each point of differentiability.

A.4.4 Proof of proposition

Proposition 3. Suppose the differentiability assumptions hold.

(a) Let h∗ be any absolutely continuous, weakly increasing function that satisfies

∂2KD(h, θ)

∂h∂θ
≤ R′(h) for all h ∈ h∗(Θ), θ ∈ Θ.

There is an incentive compatible direct mechanism in which π(θ) = 1 and h(θ) = h∗(θ)
for all θ ∈ Θ.

(b) Let h∗∗ be any absolutely continuous, weakly decreasing function that satisfies

∂2KD(h, θ)

∂h∂θ
≥ R′(h) for all h ∈ h∗∗(Θ), θ ∈ Θ.

There is an incentive compatible direct mechanism in which π(θ) = 1 and h(θ) = h∗∗(θ)
for all θ ∈ Θ.

Proof. We prove the first claim; the proof of the second is analogous. Take any V0 ∈ R, set
VD(θ) = V0,1 and then define VD(θ) according to Equation A.2 for all θ ∈ (θ, θ]. For any
θ ∈ Θ and almost all θ′ ∈ [θ, θ), Lemma A.3 implies

∂ΦD(θ
′ | θ)

∂θ′
= h′(θ′)

[
R′(h(θ′))(θ − θ′)−

(
∂KD(h(θ

′), θ)

∂h
− ∂KD(h(θ

′), θ′)

∂h

)]
= h′(θ′)

[
R′(h(θ′))(θ − θ′)−

∫ θ

θ′

∂2KD(h(θ
′), t)

∂h∂t
dt

]
≥ h′(θ′)

[
R′(h(θ′))(θ − θ′)−

∫ θ

θ′
R′(h(θ′)) dt

]
= 0.

1A task for future work is to identify a sharp condition under which (VA) holds as well.
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Therefore, ΦD(θ | θ) ≥ ΦD(θ
′ | θ) for all θ′ < θ. Similarly, for almost all θ′ ∈ (θ, θ],

∂ΦD(θ
′ | θ)

∂θ′
= h′(θ′)

[
R′(h(θ′))(θ − θ′)−

(
∂KD(h(θ

′), θ)

∂h
− ∂KD(h(θ

′), θ′)

∂h

)]
= h′(θ′)

[(
∂KD(h(θ

′), θ′)

∂h
− ∂KD(h(θ

′), θ)

∂h

)
−R′(h(θ′))(θ′ − θ)

]
= h′(θ′)

[∫ θ′

θ

∂2KD(h(θ
′), t)

∂h∂t
dt−R′(h(θ′))(θ′ − θ)

]

≤ h′(θ′)

[∫ θ′

θ

R′(h(θ′)) dt−R′(h(θ′))(θ′ − θ)

]
= 0.

Therefore, ΦD(θ | θ) ≥ ΦD(θ
′ | θ) for all θ′ > θ, which combined with the prior result implies

that the direct mechanism satisfies (IC).

A.5 Proof of Proposition 4

Proposition 4. Consider an equilibrium of a contest of capabilities. Let Θ1 denote the set
of types that reach an agreement in equilibrium: Θ1 ≡ {θ ∈ Θ | π(θ) = 1}.

(a) Less-resolved Defender types reach agreement and more-resolved types deliberately choose
war (i.e., closΘ1 = {θ ∈ Θ | θ ≤ θ̂} for some θ̂) if

KD(h
′, θ′)−KD(h

′, θ′′)

θ′′ − θ′
< 1−R(h′) (3)

for all h′ ∈ h(Θ1) and all θ′, θ′′ ∈ Θ such that θ′ < θ′′.

(b) Less-resolved Defender types deliberately choose war and more-resolved types reach
agreement (i.e., closΘ1 = {θ ∈ Θ | θ ≥ θ̂} for some θ̂) if

KD(h
′, θ′)−KD(h

′, θ′′)

θ′′ − θ′
> 1−R(h′) (4)

for all h′ ∈ h(Θ1) and all θ′, θ′′ ∈ Θ such that θ′ < θ′′.

Proof. We prove the first claim; the proof of the second is analogous. Consider a direct
mechanism that satisfies (IC) in which a less-resolved Defender type deliberately chooses
war and a more-resolved type reaches agreement—i.e., π(θ′) = 0 and π(θ′′) = 1, where
θ′ < θ′′. Incentive compatibility for θ′ implies

θ′ ≥ (1−R(h(θ′′)))VD(θ
′′) +R(h(θ′′))θ′ −KD(h(θ

′′), θ′),

6



while incentive compatibility for θ′′ implies

(1−R(h(θ′′)))VD(θ
′′) +R(h(θ′′))θ′′ −KD(h(θ

′′), θ′′) ≥ θ′′.

Combined these imply

KD(h(θ
′′), θ′)−KD(h(θ

′′), θ′′)

θ′′ − θ′
≥ 1−R(h(θ′′)).

Therefore, Equation 3 does not hold.

A.6 Proof of Proposition 5

Proposition 5. Suppose the linearity assumptions hold and r − 1 < k ≤ k < r.

(a) Equation 1 and Equation 3 hold.

(b) Let π∗ be any absolutely continuous, weakly decreasing function such that π∗(θ) > 0 for
all θ ∈ Θ, and let h∗ be any absolutely continuous function that satisfies

dh∗(θ)

dθ
≥

1
r−k

− h∗(θ)

π∗(θ)
· dπ

∗(θ)

dθ

for all θ ∈ Θ at which h∗ and π∗ are differentiable. There is an incentive compatible
direct mechanism in which π(θ) = π∗(θ) and h(θ) = h∗(θ) for all θ ∈ Θ.

(c) Let π∗∗ be any absolutely continuous, weakly increasing function such that π∗∗(θ) > 0
for all θ ∈ Θ, and let h∗∗ be any absolutely continuous function that satisfies

dh∗∗(θ)

dθ
≥

1
r−k

− h∗∗(θ)

π∗∗(θ)
· dπ

∗∗(θ)

dθ

for all θ ∈ Θ at which h∗∗ and π∗∗ are differentiable. There is an incentive compatible
direct mechanism in which π(θ) = π∗∗(θ) and h(θ) = h∗∗(θ) for all θ ∈ Θ.

Proof. Claim (a). Under the linearity assumptions, Equation 1 is equivalent to

k(θ′′)− k(θ′)

θ′′ − θ′
< r.

The assumption that k′ < r ensures that this holds. Meanwhile, Equation 3 is equivalent to

k(θ′′)− k(θ′)

θ′′ − θ′
> r − 1

h′ .

Because maxH = 1, the assumption that k′ > r − 1 ensures that this holds for all h′ ∈ H.

Preliminary to claims (b) and (c). We omit the proofs that UD must satisfy a local incentive
compatibility condition given by the envelope theorem and that VD can always be chosen
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to satisfy this condition given VD(θ); these are analogous to the proofs of Lemma A.1 and
Lemma A.2 above. In the general case where π(θ) ∈ [0, 1], the envelope condition is

U ′
D(θ) =

∂ΦD(θ
′ | θ)

∂θ

∣∣∣∣
θ′=θ

= π(θ)

[
R(h(θ))− ∂KD(h(θ), θ)

∂θ

]
+ 1− π(θ).

Under the linearity assumptions, this simplifies further to

U ′
D(θ) = π(θ)h(θ) [r − k′(θ)] + 1− π(θ).

We now obtain the derivative of ΦD with respect to the reported type θ′, which will allow
us to verify global incentive compatibility. For all θ, θ′ ∈ Θ, we have

ΦD(θ
′ | θ) = π(θ′) [(1− rh(θ′))VD(θ

′) + rh(θ′)θ − k(θ)h(θ′)] + (1− π(θ′))θ

= UD(θ
′) + [1− π(θ′) + rπ(θ′)h(θ′)](θ − θ′)− π(θ′)h(θ′)[k(θ)− k(θ′)].

Let h and π be absolutely continuous. ΦD(· | θ) is absolutely continuous and thus differen-
tiable almost everywhere, per the same argument as in the proof of Lemma A.3 above. At
each point of differentiability,

∂ΦD(θ
′ | θ)

∂θ′
= 1− π(θ′) + rπ(θ′)h(θ′)− π(θ′)h(θ′)k′(θ′)

+ [r(πh)′(θ′)− π′(θ′)](θ − θ′)− [1− π(θ′) + rπ(θ′)h(θ′)]

− (πh)′(θ′)[k(θ)− k(θ′)] + π(θ′)h(θ′)k′(θ′)

= [r(πh)′(θ′)− π′(θ′)](θ − θ′)− (πh)′(θ′)[k(θ)− k(θ′)]

= (πh)′(θ′) [r(θ − θ′)− k(θ) + k(θ′)]− π′(θ′)(θ − θ′)

=

(
(πh)′(θ′)

[
r − k(θ)− k(θ′)

θ − θ′

]
− π′(θ′)

)
(θ − θ′). (A.4)

Note that r − k(θ)−k(θ′)
θ−θ′

∈ [r − k, r − k] ⊆ (0, 1) for all distinct θ, θ′ ∈ Θ.

Claim (b). Suppose π is weakly decreasing and that h′(θ′) ≥
[

1
r−k

− h(θ′)
]

π′(θ′)
π(θ′)

for all θ′ at
which h and π are differentiable. Because π′(θ′) ≤ 0, this implies that for all θ ∈ Θ,

(πh)′(θ′) = π′(θ′)h(θ′) + π(θ′)h′(θ′) ≥ π′(θ′)

r − k
≥ π′(θ′)

r − k(θ)−k(θ′)
θ−θ′

,

so the first term in parentheses in Equation A.4 is non-negative. Therefore, for all θ, θ′ ∈ Θ
such that ΦD(θ

′ | θ) is differentiable in θ′, we have that θ > θ′ implies ∂ΦD(θ′|θ)
∂θ′

≥ 0 and
θ < θ′ implies ∂ΦD(θ′|θ)

∂θ′
≤ 0. Because ΦD(· | θ) is absolutely continuous, this implies that the

direct mechanism satisfies (IC).
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Claim (c). Suppose π is weakly increasing and that h′(θ′) ≥
[

1
r−k

− h(θ′)
]

π′(θ′)
π(θ′)

for all θ′ at
which h and π are differentiable. Because π′(θ′) ≥ 0, this implies that for all θ ∈ Θ,

(πh)′(θ′) = π′(θ′)h(θ′) + π(θ′)h′(θ′) ≥ π′(θ′)

r − k
≥ π′(θ′)

r − k(θ)−k(θ′)
θ−θ′

.

The first term in parentheses in Equation A.4 is again non-negative, and the proof of incentive
compatibility follows as in the last step.

A.7 Proof of Proposition 6

Proposition 6. In the model where D’s type is prize value, if QC(βD) = QD(βD) = 0 for
all βD, then the direct mechanism is isomorphic to a contest of capabilities in the baseline
framework in which Equation 1 is satisfied. If additionally κD(h(βD)) = 0 for all βD, then
it is isomorphic to a contest of nerves.

Proof. Take an incentive compatible mechanism that satisfies (IR-D). Define a corresponding
contest of capabilities as follows:

• Map prize-value types βD into war-payoff types θ(βD) as follows:

θ(βD) =
−nD

βD

.

Because −nD < 0, this is a strictly increasing (and thus invertible) function.

• Define the hassling cost function KD(h, θ) as

KD(h, θ) =
θκD(h)

−nD

.

Notice that this is weakly decreasing in θ for θ < 0, so Equation 1 is satisfied. It is
constant in θ if κD = 0, in which case the transformed model is a contest of nerves per
our definition.

Now define a direct mechanism in the baseline framework where π̃(θ) = 1, h̃(θ) = h(−nD

θ
),

and ṼD(θ) = SD(−nD

θ
). Observe that Φ̃D(· | θ(βD)) ∝ ΨD(· | βD) for all βD: for any
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θ′ ∈ [θ(β
D
), θ(βD)],

Φ̃D(θ
′ | θ(βD)) = (1−R(h̃(θ′)))ṼD(θ

′) +R(h̃(θ′))θ(βD)−KD(h̃(θ
′), θ(βD))

= (1−R(h̃(θ′)))ṼD(θ
′) +

[
R(h̃(θ′)) +

κD(h̃(θ
′))

nD

]
θ(βD)

= (1−R(h(β′
D)))SD(β

′
D) +

[
R(h(β′

D)) +
κD(h(β

′
D))

nD

]
· −nD

βD

= (1−R(h(β′
D)))SD(β

′
D)−

R(h(β′
D))nD

βD

− κD(h(β
′
D))

βD

=
ΨD(β

′
D | βD)

βD

where β′
D ≡ −nD

θ′
. Incentive compatibility of (QC , QD, h, SD) therefore implies incentive

compatibility of (π̃, h̃, ṼD). Additionally, because θ(βD) < 0 for all βD, the latter mechanism
trivially satisfies voluntary agreements because the former satisfies (IR-D).

A.8 Proof of Proposition 7

Proposition 7. In the model where D’s type is prize value, there exist β̃, β̂ ∈ [β
D
, βD] such

that:

(a) For all βD < β̃, QD(βD) = 1 and κD(h(βD)) = 0.

(b) For all βD ∈ (β̃, β̂), QC(βD) = QD(βD) = 0. h(βD) and SD(βD) are weakly increasing
on this interval of types.

(c) For all βD > β̂, QC(βD) = 1. There exists κ̂ such that κD(h(βD)) < κ̂ for all βD < β̂
and κD(h(βD)) = κ̂ for all βD > β̂.

Proof. First, consider types β′
D, β

′′
D such that QD(β

′
D) = 1 and QC(β

′′
D) = QD(β

′′
D) = 0.

Incentive compatibility for each of these types implies

SD(β
′′
D)β

′′
D ≥ R(h(β′′

D))nD + κD(h(β
′′
D))− κD(h(β

′
D)) ≥ SD(β

′′
D)β

′
D,

which in turn implies β′′
D > β′

D. Now consider a third type β′′′
D such that QC(β

′′′
D) = 1.

Incentive compatibility for β′′
D and β′′′

D implies

[1− SD(β
′′
D)]β

′′′
D ≥ κD(h(β

′′′
D))− κD(h(β

′′
D))−R(h(β′′

D))nD ≥ [1− SD(β
′′
D)]β

′′
D,

which in turn implies β′′′
D ≥ β′′

D. This proves that the type space can be partitioned into
(potentially empty) intervals in which the lowest types of D quit, the highest types induce
C to quit, and in between neither state quits.

The claim in (a) that QD(βD) = 1 implies κD(h(βD)) = 0 is immediate from (IR-D).
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To prove the claim in (b) that h and SD are weakly increasing, consider types β′
D, β

′′
D ∈ (β̃, β̂)

such that h(β′
D) < h(β′′

D). Incentive compatibility for both types implies

[SD(β
′′
D)− SD(β

′
D)]β

′′
D

≥ [R(h(β′′
D))−R(h(β′

D))]nD + κD(h(β
′′
D))− κD(h(β

′
D))

≥ [SD(β
′′
D)− SD(β

′
D)]β

′
D.

h(β′
D) < h(β′′

D) implies that the middle term of the above expression is strictly positive, so
the first inequality implies SD(β

′′
D) > SD(β

′
D). This in turn implies β′′

D > β′
D.

Finally, to prove the claims about κ̂ in (c), consider types β′
D, β

′′
D > β̂. Incentive compatibility

for these two types implies

κD(h(β
′′
D))− κD(h(β

′
D)) ≥ 0 ≥ κD(h(β

′
D))− κD(h(β

′′
D)),

so κD(h(β
′
D)) = κD(h(β

′′
D)) = κ̂. Additionally, incentive compatibility for any βD < β̂ implies

SD(βD)βD −R(h(βD))nD − κD(h(βD)) ≥ βD − κ̂.

Because SD(βD) < 1, this implies κ̂ > κD(h(βD)).
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