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Abstract

In Part I, I discuss proofs for the model in the paper (Sections 1-4), and solve for a

variation of the model in the paper that has A pay costs for investing in t (Section 5).

I conclude this part by describing justi�cation for how I de�ne a �deterrence failure�

(Section 6). In Part II, I consider scenarios where θ is a continuous random variable

rather than a dichotomous random variable. In Section 7, I include a sample model,

and in Section 8, I utilize mechanism design to present general results on deterrence

failure. Across all models and speci�cations, I �nd substantively similar results: that

the �predictability� and �emboldening� mechanisms following improvements in public

hassling capabilities (notably, not private hassling capabilities) described in the body

of the paper are still the key drivers for deterrence failure.
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Part I

Discussion of the Example Model and

Extensions.

1 In-Paper Model Equilibrium

1.1 Intuition

Assume that for a selected t, a type θ D optimally does not go to war. This type θ D selects

an optimal h∗ following

h∗(t) ∈argmaxh∈R+

{
1− ρ− t+ h+ ωA −

(h)2

F (α, θ)

}
.

I take �rst-order conditions with respect to h of the expression above to identify the optimal

level of hassling h∗. This unique value is

h∗ =
F (α, θ)

2
.

Using h∗, I re-write D's utility in terms of the selected t and parameters α and θ. This is

UD =

1− ρ− t+ ωA + F (α,θ)
4

if 1− ρ− t+ ωA + F (α,θ)
4
≥ 1− ρ− ωD,

1− ρ− ωD otherwise.
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The top line is D's utility from hassling, and the bottom line is from going to war. For any

t that A chooses, A will produce one of three outcomes: A selects a t that never invokes D

to go to war, A selects a t that invokes types θ to go to war, or A selects a t that invokes all

types to go to war. When A selects a t such that no types D will go to war, A attains utility

EUA =Pr(θ) ∗ (ρ+ t− h∗(θ)− ωA) + Pr(θ̄) ∗
(
ρ+ t− h∗(θ̄)− ωA

)
or

EUA =ρ− ωA + t− Pr(θ)F (α, θ)

2
− Pr(θ̄)F (α, θ̄)

2
. (1)

When A selects a t such that only types θ will go to war, A attains utility

EUA =Pr(θ) ∗ (ρ− ωA) + Pr(θ̄) ∗
(
ρ+ t− h∗(θ̄)− ωA

)
or

EUA =ρ− ωA + Pr(θ̄)

(
t− F (α, θ̄)

2

)
. (2)

When A selects a t such that all types go to war, A attains utility

EUA =ρ− ωA. (3)

There are two issues to note across (1)-(3). First, (1) and (2) are always weakly larger than

(3); because I have assumed that P (t∗, h∗) = ρ + t∗ − h∗ ∈ (ρ, 1), then I know that A can

always do weakly better not going to war. Second, expressions (1) and (2) are both strictly

increasing in t because there are no costs to investing in the rising technology; therefore, A

is only ever constrained by an increased likelihood of war. Therefore, A will select a t that

will either make a type θ or a type θ̄ indi�erent between war and hassling because at these

points A incurs more war. Thus, A will select the value t that will make a type θ ∈ {θ, θ̄}
indi�erent between hassling and war, which is de�ned by condition

1− ρ− t+ ωA +
F (α, θ)

4
=1− ρ− ωD

or

t(θ) =ωD + ωA +
F (α, θ)

4
.
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A's decision results in no war (when A benchmarks their t to make type θ indi�erent)
or sometimes war (when A benchmarks their t to make type θ̄ indi�erent) depending on
A's willingness to sometimes risk war to achieve greater levels of rising technology. I can
identify A's expected utility from never going to war. Here A selects a t that makes a type
θ indi�erent between war and hassling. This is t(θ) (which I will also sometimes write as
t(θ, α) for α ∈ {α, ᾱ} when it is useful to do so), which will give A an expected utility

EUA =Pr(θ) ∗
(
ρ+ ωD + ωA +

F (α, θ)

4
− F (α, θ)

2
− ωA

)
+ Pr(θ̄) ∗

(
ρ+ ωD + ωA +

F (α, θ)

4
− F (α, θ̄)

2
− ωA

)
,

or

EUA =ρ+ Pr(θ) ∗
(
ωD −

F (α, θ)

4

)
+ Pr(θ̄) ∗

(
ωD +

F (α, θ)

4
− F (α, θ̄)

2

)
.

I can also express D's utility, which di�ers based on type.

EUD(θ) =1− ρ− ωD

EUD(θ̄) =1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
.

I can then identify A's expected utility from provoking types θ to go to war. Here A selects

a t that makes a type θ̄ indi�erent between war and hassling (thus provoking types θ to go

to war). This is t(θ̄) (which I will also sometimes write as t(θ̄, α) for α ∈ {α, ᾱ} when it is

useful to do so), which will give A an expected utility

EUA =Pr(θ) ∗ (ρ− ωA) + Pr(θ̄) ∗
(
ρ+ ωD −

F (α, θ̄)

4

)
or

EUA =p+ Pr(θ) ∗ (−ωA) + Pr(θ̄) ∗
(
ωD −

F (α, θ̄)

4

)
.

I can also express D's expected utility.

EUD(θ) =1− ρ− ωD
EUD(θ̄) =1− ρ− ωD.
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1.2 Equilibrium

In the interest of saving space, I only include aspects not covered in Proposition 1. Below is

D's best response in response to t in Stage 3. A type θ parameter α D will set

w∗D =

0 if ωD + ωA + F (α,θ)
4
≥ t,

1 otherwise.

Regarding D's o�er to A in Stage 4, D's best response is x∗ = ρ+ t− h− ωA for all t and h.

Regarding A's decision to go to war in Stage 5, I assume that, for a �xed t and h,

w∗A =

0 if ρ+ t∗ − h∗ − ωA, and

1 otherwise.

1.3 A's Behavior within Predictability and Emboldneing Mecha-

nisms

The following �gures further elaborate on A's decision making in the Predictability and Em-

boldening mechanisms. In the �gures, the x-axis plots values of t (with t values increasing

moving left-to-right), and the y-axis plots A's expected utility from the selected t (with val-

ues increasing low-to-high). The asterisks denotes the equilibrium level of rising technology

and A's corresponding expected utility. These �gures are derived using the parameters de-

scribed in Figures 1 and 2 in the text.

Figure 3 illustrates more of what happens in the predictability example (partially described

in Figure 1 in the text). When facing a parameter α D (top graph), A's utility is increasing

in t until it reaches t(α, θ).1 A's utility is increasing in this range because, for the increases

in t, D will not go to war and each type of D selects a �xed hassling level. Then, for any

investment in rising technology such that t > t(α, θ), types θ D will go to war. This creates

the discontinuity at t = t(α, θ), as beyond that point A goes to war with probability Pr(θ).

For the set of t's such that t(α, θ) < t ≤ t(α, θ̄), A's utility is once again increasing in t,

then experiences another discontinuity at t = t(α, θ̄) as, for any t > t(α, θ̄), types θ̄ D's will

1While I only visualize t ≥ 0.575, A's utility is also increasing for 0 ≤ t ≤ 0.575.
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t = 0.575 t(α, θ) t(α, θ̄) t = 0.825
0

ρ− ωA

0.6

*

E
U
A

A's Utility Across t's, for α

t = 0.575 t(ᾱ, θ) t(ᾱ, θ̄) t = 0.825
0

ρ− ωA

0.6

*E
U
A

A's Utility Across t's, for ᾱ

Figure 3. Predictability and State A's Utilities Across Values of t. The parameter
values are identical to those used in the Predictability example in the text. A's selected level
of investment under parameters α and ᾱ are denoted by the asterisks.

go to war. Thus, if A selects a t > t(α, θ̄), then types θ and types θ̄ D's will go to war,

which grants A their wartime expected utility. For parameter α, selecting t = t(α, θ) gives

A the greatest expected utility. Intuitively, in the text of the paper, I discussed the trade-o�

between increased investment in rising technology and an increased risk of war. Here, A

attains the greatest utility from selecting investment level t = t(α, θ) and never going to war

rather than selecting investment level t = t(α, θ̄) and sometimes going to war.

An identical logic holds for parameter ᾱ.

Figure 4 illustrates more of what happens in the emboldening example (partially described

in Figure 2 in the text). In the emboldening example � which, importantly, has di�erent

parameter values than the predictability example! � under the ᾱ parameter, a new dynamic

(relative to anything seen for predictability) occurs. Under parameter ᾱ, there is a very large
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space between t(ᾱ, θ) and t(ᾱ, θ̄), indicating that there is now a big di�erence between the

selected t that would avoid war altogether (t(ᾱ, θ)), and the greatest t that A could select

that would only invoke type θ D's to go to war (t(ᾱ, θ̄)). This means that under ᾱ, A has

more to gain by risking war with likelihood Pr(θ). In the emboldening case for α, while

A's utility is increasing in t for t(α, θ) < t ≤ t(α, θ̄), but the greatest t in this set does not

produce a utility for A that su�ciently o�sets A's costs from having to go to war with type

θ D's. Visually, under α, A's expected utility is increasing for t(α, θ) < t ≤ t(α, θ̄), but

this does not creep up high enough (due to the small di�erence between t(α, θ) and t(α, θ̄)),

ultimately resulting in A attaining a greater expected utility for selecting t = t(α, θ) and not

going to war relative to selecting t = t(α, θ̄) and sometimes risking war. This is no longer

the case under parameter ᾱ, as the greater distance between t = t(ᾱ, θ) and t = t(ᾱ, θ̄) now

A can invest much more in rising technology so long that A is willing to sometimes go to

war. Referencing the terminology in the paper, under parameter α, the trade-o� between

selecting a greater level of rising technology and going to war more was not worthwhile;

under parameter ᾱ, A can select a much greater level of t, which o�ers enough upside to

make it worthwhile to go to war with types θ.
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t = 0.575 t(α, θ) t(α, θ̄) t = 0.875
0

ρ− ωA

0.6

*

E
U
A

A's Utility Across t's, for α

t = 0.575 t(ᾱ, θ) t(ᾱ, θ̄) t = 0.875
0

ρ− ωA

0.6

*

E
U
A

A's Utility Across t's, for ᾱ

Figure 4. Emboldening and State A's Utilities Across Values of t. The parameter
values are identical to those used in the Emboldening example in the text. A's selected level
of investment under parameters α and ᾱ are denoted by the asterisks.

1.4 Predictability and Poker

An alternate way to think about how better capabilities could lead to worse outcomes through

the predictability channel is to consider a di�erent game of private information: poker. In

a game of Texas hold'em poker, consider the following choice: a player can choose between

drawing a pair of queens and this information would be private (only the player would know

what cards they had), or they could draw a pair of aces and the player's opponents could

see its hand. Faced with this choice, any serious poker player would take the pair of queens.

This is not to say that two aces are a worse hand than the two queens: the odds favor the

aces. But rather, because the player's opponents know how best to respond to the pair of

aces, the player with two aces cannot capitalize on its better hand because they have lost

the edge that private information gives them. Instead, a good poker player knows that with

a pretty good hand (two queens) and private information, they could likely extract more
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value from the game.

2 Proposition 2 Proof

Through the top two Predictability Conditions, across α and ᾱ, the equilibrium is discussed

under Case 1 in Proposition 1. The third condition de�nes

F (α, θ̄)− F (α, θ) >F (ᾱ, θ̄)− F (ᾱ, θ),

which, through algebra, is equivalent to

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
>1− ρ− ωD +

F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4

where the left-hand side is type θ̄, parameter α D's utility and the right hand side is type θ̄,

parameter ᾱ D's utility. Because across parameters α ∈ {α, ᾱ} types θ attain their wartime

utility, I am able to say that

UD(σ∗(θ, α)) =UD(σ∗(θ, ᾱ))

and

UD(σ∗(θ̄, α)) >UD(σ∗(θ̄, ᾱ)),

which is a deterrence failure.

3 Proposition 3 Proof

Through the two Emboldening Conditions, when α = α, the equilibrium is discussed under

Case 1 in Proposition 1, and when α = ᾱ, the equilibrium is discussed under Case 2. Thus,

when these two conditions hold, types θ always attain their wartime utility.

Comparing the utilities that a capabilities (ᾱ, θ̄) attains (right hand side below) to the

utility that a capabilities (α, θ̄) attain (left hand side below) is

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
>1− ρ− ωD.
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Thus, I can say

UD(σ∗(θ, α)) =UD(σ∗(θ, ᾱ))

and

UD(σ∗(θ̄, α)) >UD(σ∗(θ̄, ᾱ)),

which is a deterrence failure.

4 Proposition 4 Proof

The �only if� was shown in Propositions 2 and 3.

When there is a deterrence failure following improvements in α, it must be that

UD(σ∗(θ, α)) ≥UD(σ∗(θ, ᾱ)) (4)

and

UD(σ∗(θ̄, α)) ≥UD(σ∗(θ̄, ᾱ)), (5)

with at least one inequality holding strictly. Proposition 1 shows, for a �xed α, one of two

cases are possible: A selects either t(θ, α) = ωD + ωA + F (α,θ)
4

(type θ is made indi�erent

between hassling and war) or t(θ̄, α) = ωD + ωA + F (α,θ̄)
4

(type θ̄ is made indi�erent between

hassling and war). This implies that there are four possible outcomes across α and ᾱ, which I

will designate by the selected t's: they are (t(θ, α), t(θ, ᾱ)), (t(θ̄, α), t(θ, ᾱ)), (t(θ, α), t(θ̄, ᾱ)),

or (t(θ̄, α), t(θ̄, ᾱ)).

Outcome 1: (t(θ, α), t(θ, ᾱ))

When A selects t(θ, α) and t(θ, ᾱ), it implies that A does weakly better avoiding war for both

α and ᾱ. For A to behave this way, it must be that Pr(θ) (ωA + ωD)+
(
Pr(θ̄)− Pr(θ)

) F (α,θ)
4
−

Pr(θ̄)F (α,θ̄)
4
≥ 0 for α ∈ {α, ᾱ}. Thus, the �rst two parts of the Predictability Conditions

hold. Furthermore, because there is a deterrence failure, I can substitute D's utilities from
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these cases into expressions (4) and (5) above, yielding

1− ρ− ωD ≥1− ρ− ωD

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
≥1− ρ− ωD +

F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4
.

Because types θ receive the same utility across α's, the bottom inequality holds strictly when

there is a deterrence failure. Re-arranging the bottom condition yields the �nal Predictabil-

ity Condition.

Outcome 2: (t(θ̄, α), t(θ, ᾱ))

When A selects t(θ̄, α) and t(θ, ᾱ), it implies that A does better sometimes going to war

when facing a parameter α and weakly better not going to war against a parameter ᾱ. By

the conditions of the �if� clause (i.e. if there is a deterrence failure), this case is ruled out.

As shown in Proposition 1, when A selects t(θ̄, α) and t(θ, ᾱ), capabilities α, θ̄ D attains

utility 1− ρ−CD while capabilities ᾱ, θ̄ D attains utility 1− ρ− ωD + F (α,θ̄)
4
− F (α,θ)

4
, which

is strictly larger.

Outcome 3. (t(θ, α), t(θ̄, ᾱ))

When A selects t(θ, α) and t(θ̄, ᾱ), it implies that A does weakly better not going to war

against a parameter α and better sometimes going to war when facing a parameter ᾱ. For A

to behave this way, it must be that Pr(θ) (ωA + ωD)+
(
Pr(θ̄)− Pr(θ)

) F (α,θ)
4
−Pr(θ̄)F (α,θ̄)

4
≥

0 and Pr(θ) (ωA + ωD) +
(
Pr(θ̄)− Pr(θ)

)
F (ᾱ,θ)

4
− Pr(θ̄)F (ᾱ,θ̄)

4
< 0. This meets the two Em-

boldening Conditions. Note that here a deterrence failure occurs within this case without

any further conditions needed; I substitute D's utilities into expressions (4) and (5), yielding

1− ρ− ωD ≥1− ρ− ωD

and

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
≥1− ρ− ωD,

where the bottom inequality always holds strictly.
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Outcome 4. t(θ̄, α), t(θ̄, ᾱ)

When A selects t(θ̄, α) and t(θ, ᾱ), it implies that A does weakly sometimes going to war

for both α and ᾱ. When there is a deterrence failure, this case is ruled out. As shown in

Proposition 1, when A selects t(θ̄, α) and t(θ̄, ᾱ), all types and capabilities D attain their

wartime utility 1−ρ−CD. Because across all hassling capabilities D attains the same utility,

there cannot be a deterrence failure.

�

5 Observation 2 Proof

Based on Proposition 4, I can prove Observation 1 by showing that the Predictability and

Emboldening Conditions produce a welfare loss. Assume for now the Predictability Condi-

tions hold. When nature selects θ, A's and D's utilities are

UD(α, θ) =1− ρ− ωD,

UA(α, θ) =ρ+ ωD −
F (α, θ)

4
,

UD(ᾱ, θ) =1− ρ− ωD,

UA(ᾱ, θ) =ρ+ ωD −
F (ᾱ, θ)

4
.

I can compare utilities across α and ᾱ. Because F (·, θ) is increasing in α, UD(ᾱ, θ) +

UA(ᾱ, θ) < UD(α, θ) + UA(α, θ). Thus, welfare is strictly reduced in moving from α to

ᾱ.

And when nature selects θ̄, A's and D's utilities are

UD(α, θ̄) =1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
,

UA(α, θ̄) =ρ+ ωD +

(
F (α, θ)

4
− F (α, θ̄)

2

)
,

UD(ᾱ, θ̄) =1− ρ− ωD +
F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4
,

UA(ᾱ, θ̄) =ρ+ ωD +

(
F (ᾱ, θ)

4
− F (ᾱ, θ̄)

2

)
.
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Through algebra, the expression UD(ᾱ, θ̄) +UA(ᾱ, θ̄) S UD(α, θ̄) +UA(α, θ̄) can be simpli�ed

to −F (ᾱ,θ̄)
4
S −F (α,θ̄)

4
. Because F (α, ·) is strictly increasing in α, welfare is strictly reduced in

moving from α to ᾱ. Thus, regardless of the realized θ, when the Predictability Conditions

holds, following an improvement in α, there is a welfare loss.

Now assume the Emboldening Conditions holds. When nature selects θ, A's and D's utilities

are

UD(α, θ) =1− ρ− ωD,

UA(α, θ) =ρ+ ωD −
F (α, θ)

4
,

UD(ᾱ, θ) =1− ρ− ωD,

UA(ᾱ, θ) =ρ− ωA.

Through algebra, the expression UD(ᾱ, θ) +UA(ᾱ, θ) S UD(α, θ) +UA(α, θ) can be simpli�ed

to −ωD − ωA S −F (α,θ)
4

. By the assumption that P (t∗, h∗) > ρ,2 welfare is strictly reduced

in moving from α to ᾱ.

And when nature selects θ̄, A's and D's utilities are

UD(α, θ̄) =1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
,

UA(α, θ̄) =ρ+ ωD +

(
F (α, θ)

4
− F (α, θ̄)

2

)
,

UD(ᾱ, θ̄) =1− ρ− ωD,

UA(ᾱ, θ̄) =ρ+ ωD −
F (ᾱ, θ̄)

4
.

Through algebra, the expression UD(ᾱ, θ) +UA(ᾱ, θ) S UD(α, θ) +UA(α, θ) can be simpli�ed

to −F (ᾱ,θ̄)
4
S −F (α,θ̄)

4
. Because F (α, ·) is strictly increasing in α, welfare is strictly reduced in

moving from α to ᾱ. Thus, regardless of the realized θ, when the Emboldening Conditions

holds, following an improvement in α, there is a welfare loss.

2This assumption amounts to t∗ > h∗. When D is parameter α and type θ, then t∗ = ωD + ωA + F (α,θ)
4

and h∗ = F (α,θ)
2 .
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5.1 When a Welfare Loss Doesn't Occur

Example of improvements in hassling capabilities not producing a welfare loss, consider when

Pr(θ) (ωA + ωD) +
(
Pr(θ̄)− Pr(θ)

) F (α,θ)
4
− Pr(θ̄)F (α,θ̄)

4
< 0 and Q = Pr(θ) (ωA + ωD) +(

Pr(θ̄)− Pr(θ)
)
F (ᾱ,θ)

4
− Pr(θ̄)F (ᾱ,θ̄)

4
> 0. Under these conditions, A sometimes goes to war

under parameter α (Case 2 in Proposition 1), and always avoids war under parameter ᾱ

(Case 1 in Proposition 1). When nature selects θ, A's and D's utilities are

UD(α, θ) =1− ρ− ωD,

UA(α, θ) =ρ− ωA
UD(ᾱ, θ) =1− ρ− ωD,

UA(ᾱ, θ) =ρ+ ωD −
F (ᾱ, θ)

4
.

Through algebra, the expression UD(ᾱ, θ̄) +UA(ᾱ, θ̄) S UD(α, θ̄) +UA(α, θ̄) can be simpli�ed

to −F (ᾱ,θ)
4
S −ωD−ωA. By the assumption that P (t∗, h∗) > ρ,3 welfare is strictly increasing

in moving from α to ᾱ.

6 Example Model With Costs from Investing in t

In this section, I introduce a model with costs. I �nd, similar to the model in the text, that

the only way for a deterrence failure to arise is through the emboldening or predictability

mechanisms. I generalize these mechanisms to accommodate the broader

When D becomes more predictable, there is (weakly) less war across all types, and high

type D's (types θ > θ) attain less value from their private information. When A becomes

emboldened, there is more war, and A is motivated to select a new, more aggressive t∗

that diminishes high type D's utility. Both circumstances can still arise here, though the

conditions are more expansive than in the case in the text.

6.1 Model Assumptions

I modify the model in the text. The key distinction here is that I assume that selecting rising

technology t ∈ R+ comes with cost −κt2 for A. These costs are realized for A whenever war

does not occur in Stage 3.

3This assumption amounts to t∗ > h∗. When D is parameter ᾱ and type θ, then t∗ = ωD + ωA + F (ᾱ,θ)
4

and h∗ = F (ᾱ,θ)
2 .
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As it was for the model in the text, here I also assume that in equilibrium the �nal value of

the P function and �nal o�er have the properties P ∈ (ρ, 1) and x ∈ (0, 1), which prevent

any kinks or constraints from driving the results.

Note, from the assumptions above, it rules out the possibility that t = 0. When A does

not want to invest in the rising technology, this falls outside the scope of the analysis. It also

rules out the knife-edge cases where t∗ = h∗, which do not matter much for the analysis.

6.2 Equilibrium Preliminaries, Intuition, and Equilibrium

As it was for the model in the text, through the assumptions above, I can describe equi-

librium behavior in a relatively straightforward manner. Before discussing how A plays the

game, note that D selects h∗, w∗D, and x
∗ identical to how D played in the model where A

faced no costs.

In the model in the text, A restricted their selected t out of fear of more war with D.

This led to A choosing between t(θ) and t(θ̄), the levels of rising technology that would

make a low-type (θ) and a high-type (θ̄) indi�erent between hassling and war (respectively).

These two values are still relevant, but here A may be constrained by their costs of war. For

now assume that A's optimal selection of t is weakly less than t(θ) � in other words, A wants

to avoid war and the cost to the rising technology are binding (I discuss other cases next).

Then A is selecting a t∗ de�ned by

t∗ ∈ argmax
{
Pr(θ) ∗

(
ρ+ t− F (α, θ)

2
− ωA − κt2

)
+ Pr(θ̄) ∗

(
ρ+ t− F (α, θ̄)

2
− ωA − κt2

)}
.

The solution to this optimization is t∗ = 1
2κ
. Now assume A's optimal selection of t such that

t ∈ (t(θ), t(θ̄)) � in other words, A is willing to sometimes go to war (and select a t > t(θ)),

but the costs to the rising technology are still binding. Then A is selecting a t∗ de�ned by

t∗ ∈ argmax
{
Pr(θ) ∗ (ρ− ωA) + Pr(θ̄) ∗

(
ρ+ t− F (α, θ̄)

2
− ωA − κt2

)}
.

The solution to this optimization is also t∗ = 1
2κ
. Thus, I de�ne a new constant: t̂ = 1

2κ

which is, when A's cost constraints bind, how far A is willing to go in their selection of t.
Here A will choose between the values t̂, t(θ) , and t(θ̄). To better characterize A's choice,
I de�ne A's utilities as a function of their selected t and, in the case of t̂, whether it ever
provokes a type θ to go to war (which occurs when t̂ is selected and t̂ > t(θ)). For a �xed α,
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these are

UA(t̂, peace) =Pr(θ)

(
ρ+

1

4κ
− F (α, θ)

2
− ωA

)
+ Pr(θ̄)

(
ρ+

1

4κ
− F (α, θ̄)

2
− ωA

)
,

UA(t(θ)) =− κ
(
ωD + ωA +

F (α, θ)

4

)2

+ Pr(θ) ∗
(
ρ+ ωD −

F (α, θ)

4

)
+ Pr(θ̄) ∗

(
ρ+ ωD +

F (α, θ)

4
− F (α, θ̄)

2

)
,

UA(t̂, war) =Pr(θ) ∗ (ρ− ωA) + Pr(θ̄) ∗
(
ρ− F (α, θ̄)

2
− ωA +

1

4κ

)
,

UA(t(θ̄)) =Pr(θ) (ρ− ωA) + Pr(θ̄)

(
ρ+ ωD −

F (α, θ̄)

4

)
− κ

(
ωD + ωA +

F (α, θ̄)

4

)2

.

The top value is the case where the costs bind, t∗ = t̂, and t̂ < t(θ); in this case, war never

occurs. The second value is when t∗ = t(θ). The third value is when the cost constraints

bind, t∗ = t̂, and t̂ ∈ (t(θ), t(θ̄)); in this case, war sometimes occurs. The last value is when

t∗ = t(θ̄).

With this in place, I can de�ne the selected equilibria to the game. Proposition 5 describes

�ve cases. These cases rely on (a) where the value t̂ lies relative to t(θ) and t(θ̄), and (b)

some comparison of A's expected utility across some subset t ∈ {t̂, t(θ), t(θ̄)}. Why does (a)

matter? For example, when t(θ̄) is greater than t̂, then A would never play t(θ̄) (with the

same logic for t(θ) > t̂ and A never playing t(θ)). Why does (b) matter? Once (a) narrows

the possible range of actions, then (b) compares A's utilities across possible selected actions.

Proposition 5: Under the assumptions above, for a �xed α ∈ {α, ᾱ}, the following ac-

tions are part of the perfect Bayesian Nash Equilibrium.

Case 1. When t̂ ≤ t(θ) holds, A avoids war:

• A's beliefs on θ follow its expected distribution. A selects technology level

t∗ =
1

2κ
.

For the selected t∗, a type θ ∈ {θ, θ̄} D will always hassle, setting h∗ = F (α,θ)
2

. Each
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type D has utility

UD(σ∗(θ, α)) =1− ρ− 1

2κ
+ ωA +

F (α, θ)

4
,

UD(σ∗(θ̄, α)) =1− ρ− 1

2κ
+ ωA +

F (α, θ̄)

4
.

A has expected utility

EUA =Pr(θ)

(
ρ+

1

4κ
− F (α, θ)

2
− ωA

)
+ Pr(θ̄)

(
ρ+

1

4κ
− F (α, θ̄)

2
− ωA

)
.

Case 2. When t̂ ∈
(
t(θ), t(θ̄)

)
and UA(t̂, war) ≤ UA(t(θ)), A avoids war:

• A's beliefs on θ follows its expected distribution. A selects technology level

t∗ =ωD + ωA +
F (α, θ)

4
.

For the selected t∗, a type θ ∈ {θ, θ̄} D will always hassle, setting h∗ = F (α,θ)
2

. Each

type D has utility

UD(σ∗(θ, α)) =1− ρ− ωD,

UD(σ∗(θ̄, α)) =1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
.

• A has expected utility

EUA =ρ+ ωD − κ
(
ωD + ωA +

F (α, θ)

4

)2

− Pr(θ)
(
F (α, θ)

4

)
+ Pr(θ̄)

(
F (α, θ)

4
− F (α, θ̄)

2

)
.

Case 3. When t̂ ∈
(
t(θ), t(θ̄)

)
and UA(t̂, war) > UA(t(θ)), A Sometimes Risks War:

• A's beliefs on θ follows its expected distribution. A selects technology level

t∗ =
1

2κ
.

• For the selected t∗, type θ D will go to war and type θ̄ D will hassle, setting h∗ = F (α,θ̄)
2

.
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Each type D has utility

UD(σ∗(θ, α)) =1− ρ− ωD,

UD(σ∗(θ̄, α)) =1− ρ− 1

2κ
+ ωA +

F (α, θ̄)

4
.

A has expected utility

EUA =Pr(θ) ∗ (ρ− ωA) + Pr(θ̄) ∗
(
p− F (α, θ̄)

2
− ωA +

1

4κ

)
.

Case 4. When t̂ ≥ t(θ̄) and UA(t(θ)) < UA(t(θ̄)), A Sometimes Risks War:

• A's beliefs on θ follows its expected distribution. A selects technology level

t∗ =ωD + ωA +
F (α, θ̄)

4
.

For the selected t∗, a type θ D will go to war, and a type θ̄ D will hassle, setting

h∗ = F (α,θ̄)
2

. Each type D has utility

UD(σ∗(θ, α)) =1− ρ− ωD,

UD(σ∗(θ̄, α)) =1− ρ− ωD.

A has expected utility

EUA =Pr(θ) (ρ− ωA) + Pr(θ̄)

(
ρ+ ωD −

F (α, θ̄)

4

)
− κ

(
ωD + ωA +

F (α, θ̄)

4

)2

.

Case 5. When t̂ ≥ t(θ̄) and UA(t(θ)) ≥ UA(t(θ̄)), A avoids war:

• A's beliefs on θ follows its expected distribution. A selects technology level

t∗ =ωD + ωA +
F (α, θ)

4
.

For the selected t∗, a type θ ∈ {θ, θ̄} D will always hassle, setting h∗ = F (α,θ)
2

. Each
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type D has utility

UD(σ∗(θ, α)) =1− ρ− ωD,

UD(σ∗(θ̄, α)) =1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
.

• A has expected utility

EUA =ρ+ ωD − κ
(
ωD + ωA +

F (α, θ)

4

)2

− Pr(θ)
(
F (α, θ)

4

)
+ Pr(θ̄)

(
F (α, θ)

4
− F (α, θ̄)

2

)
.

Proof: Follows from discussion above.

The above completely characterizes all possible equilibria.

6.3 Results

Recall from earlier the features of A becoming emboldened or D becoming predictable fol-

lowing changes in α. When D becomes more predictable, there is (weakly) less war, and high

type D's attain less value from their private information. When A becomes emboldened, there

is more war, and A is motivated to select a new, more aggressive t∗ that diminishes high type

D's utility. Both circumstances can still arise here, though the conditions are more expansive

than in the case in the text. To keep the terminology reasonable, I use �E� and �P� to denote

emboldening or predictability, and κ to denote that the conditions relate to the model with

costs. Also, I now refer to t(θ, α) and UA(t, α) (for α ∈ {α, ᾱ}) when it is necessary to clarify.
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De�nition: under the Pκ1 conditions, the following holds:

t̂ ∈
(
t(θ, α), t(θ̄, α)

)
,

t̂ ∈
(
t(θ, ᾱ), t(θ̄, ᾱ)

)
,

UA(t̂, war, α) ≤UA(t(θ, α), α),

UA(t̂, war, ᾱ) ≤UA(t(θ, ᾱ)),

F (α, θ̄)− F (α, θ) >F (ᾱ, θ̄)− F (ᾱ, θ).

De�nition: under the Pκ2 conditions, the following holds:

t̂ ≥t(θ̄, α),

t̂ ∈
(
t(θ, ᾱ), t(θ̄, ᾱ)

)
,

UA(t(θ, α), α) ≥UA(t(θ̄, α), α),

UA(t̂, war, ᾱ) ≤UA(t(θ, ᾱ), ᾱ),

F (α, θ̄)− F (α, θ) >F (ᾱ, θ̄)− F (ᾱ, θ).
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De�nition: under the Pκ3 conditions, the following holds:

t̂ ≥t(θ̄, α),

t̂ ≥t(θ̄, ᾱ),

UA(t(θ, α), α) ≥UA(t(θ̄, α), α),

UA(t(θ, ᾱ), ᾱ) ≥UA(t(θ̄, ᾱ), ᾱ),

F (α, θ̄)− F (α, θ) >F (ᾱ, θ̄)− F (ᾱ, θ).

De�nition: under the Pκ4 conditions, the following holds:
4

t̂ ∈
(
t(θ, α), t(θ̄, α)

)
,

t̂ ∈
(
t(θ, ᾱ), t(θ̄, ᾱ)

)
,

UA(t̂, war, α) ≥UA(t(θ, α), α),

UA(t(θ, ᾱ), ᾱ) ≥UA(t̂, war, ᾱ),

− 1

2κ
+ ωA + ωD +

F (α, θ̄)

4
>
F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4
.

And I can also de�ne conditions for emboldening.

4The last condition follows from 1− ρ− 1
2κ + ωA + F (α,θ̄)

4 ≥ 1− ρ− ωD + F (ᾱ,θ̄)
4 − F (ᾱ,θ)

4 .
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De�nition: under the Eκ1 conditions, the following holds:5

t̂ ∈
(
t(θ, α), t(θ̄, α)

)
,

t̂ ∈
(
t(θ, ᾱ), t(θ̄, ᾱ)

)
,

UA(t(θ, α), α) ≥UA(t̂, war, α),

UA(t(θ, ᾱ), ᾱ) ≤UA(t̂, war, ᾱ),

F (α, θ̄)

4
− F (α, θ)

4
>− 1

2κ
+ ωA + ωD +

F (ᾱ, θ̄)

4
.

De�nition: under the Eκ2 conditions, the following holds:

t̂ ≥t(θ̄, α),

t̂ ∈
(
t(θ, ᾱ), t(θ̄, ᾱ)

)
,

UA(t(θ, α), α) ≥UA(t(θ̄, α), α),

UA(t(θ, ᾱ), ᾱ) ≤UA(t̂, war, ᾱ),

F (α, θ̄)

4
− F (α, θ)

4
>− 1

2κ
+ ωA + ωD +

F (ᾱ, θ̄)

4
.

5The last condition is equivalent to 1− ρ− ωD + F (α,θ̄)
4 − F (α,θ)

4 > 1− ρ− 1
2κ + ωA + F (ᾱ,θ̄)

4 .

23



De�nition: under the Eκ3 conditions, the following holds:

t̂ ≥t(θ̄, α),

t̂ ≥t(θ̄, ᾱ),

UA(t(θ, α), α) ≥UA(t(θ̄, α), α),

UA(t(θ, ᾱ), ᾱ) <UA(t(θ̄, ᾱ), ᾱ).

Having introduced these cases, I can present Proposition 6, which is analogous to Proposition

4:

Proposition 6: Improvements in α produce a deterrence failure if and only if Pκ1, Pκ2,

Pκ3, Pκ4, Eκ1, Eκ2, or Eκ3 hold.

6.4 Proving Proposition 6

6.4.1 Proving ←

On Pκ1:

Through the top four Pκ1 conditions, across α and ᾱ, the equilibrium is discussed un-

der Case 2 in Proposition 5. The �fth condition de�nes

F (α, θ̄)− F (α, θ) >F (ᾱ, θ̄)− F (ᾱ, θ),

which through algebra is equivalent to

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
>1− ρ− ωD +

F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4
,

where the left-hand side is type θ̄, parameter α D's utility and the right hand side is type θ̄,

parameter ᾱ D's utility. Because across parameters α ∈ {α, ᾱ} types θ attain their wartime

24



utility, I am able to say that

UD(σ∗(θ, α)) =UD(σ∗(θ, ᾱ))

and

UD(σ∗(θ̄, α)) >UD(σ∗(θ̄, ᾱ)),

which is a deterrence failure.

An example of parameters that produce this condition are as follows: F (α, θ) = 0.1,

F (α, θ̄) = 0.43, F (ᾱ, θ) = 0.35, F (ᾱ, θ̄) = 0.44, ωD = 0.3, ωA = 0.1, ρ = 0.1, Pr(θ) = 0.2,

Pr(θ̄) = 0.8, κ = 1.

On Pκ2:

Through the top four Pκ2 conditions, when α = α, the equilibrium is discussed under

Case 5 in Proposition 5, and when α = ᾱ, the equilibrium is discussed under Case 2. The

�fth condition de�nes

F (α, θ̄)− F (α, θ) >F (ᾱ, θ̄)− F (ᾱ, θ),

which through algebra is equivalent to

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
>1− ρ− ωD +

F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4
,

where the left-hand side is type θ̄, parameter α D's utility and the right hand side is type θ̄,

parameter ᾱ D's utility. Because across parameters α ∈ {α, ᾱ} types θ attain their wartime

utility, I am able to say that

UD(σ∗(θ, α)) =UD(σ∗(θ, ᾱ))

and

UD(σ∗(θ̄, α)) >UD(σ∗(θ̄, ᾱ)),
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which is a deterrence failure.

An example of parameters that produce this condition are as follows: F (α, θ) = 0.1,

F (α, θ̄) = 0.39, F (ᾱ, θ) = 0.35, F (ᾱ, θ̄) = 0.44, ωD = 0.3, ωA = 0.1, ρ = 0.1, Pr(θ) = 0.2,

Pr(θ̄) = 0.8, κ = 1.

On Pκ3:

Through the top four Pκ3 conditions, across α and ᾱ, the equilibrium is discussed under

Case 5 in Proposition 5. The �fth condition de�nes

F (α, θ̄)− F (α, θ) >F (ᾱ, θ̄)− F (ᾱ, θ),

which through algebra is equivalent to

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
>1− ρ− ωD +

F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4
,

where the left-hand side is type θ̄, parameter α D's utility and the right hand side is type θ̄,

parameter ᾱ D's utility. Because across parameters α ∈ {α, ᾱ} types θ attain their wartime

utility, I am able to say that

UD(σ∗(θ, α)) =UD(σ∗(θ, ᾱ))

and

UD(σ∗(θ̄, α)) >UD(σ∗(θ̄, ᾱ)),

which is a deterrence failure.

An example of parameters that produce this condition are as follows: F (α, θ) = 0.25,

F (α, θ̄) = 0.4, F (ᾱ, θ) = 0.45, F (ᾱ, θ̄) = 0.48, ωD = 0.2, ωA = 0.1, ρ = 0.2, Pr(θ) = 0.3,

Pr(θ̄) = 0.7, κ = 1.

Through the top four Pκ4 conditions, when α = α, the equilibrium is discussed under

Case 3 in Proposition 5, and when α = ᾱ, the equilibrium is discussed under Case 2. The

�fth condition de�nes
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− 1

2κ
+ ωA + ωD +

F (α, θ̄)

4
>
F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4
,

which through algebra is equivalent to

1− ρ− 1

2κ
+ ωA +

F (α, θ̄)

4
>1− ρ− ωD +

F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4
,

where the left-hand side is type θ̄, parameter α D's utility and the right hand side is type θ̄,

parameter ᾱ D's utility. Because across parameters α ∈ {α, ᾱ} types θ attain their wartime

utility, I am able to say that

UD(σ∗(θ, α)) =UD(σ∗(θ, ᾱ))

and

UD(σ∗(θ̄, α)) >UD(σ∗(θ̄, ᾱ)),

which is a deterrence failure.

An example of parameters that produce this condition are as follows: F (α, θ) = 0.01,

F (α, θ̄) = 0.26, F (ᾱ, θ) = 0.24, F (ᾱ, θ̄) = 0.27, ωD = 0.25, ωA = 0.001, ρ = 0.2,

Pr(θ) = 0.01, Pr(θ̄) = 0.99, κ = 1.6.

On Eκ1:

Through the top four Eκ1 conditions, when α = α, the equilibrium is discussed under

Case 2 in Proposition 5, and when α = ᾱ, the equilibrium is discussed under Case 3. The

�fth condition de�nes

F (α, θ̄)

4
− F (α, θ)

4
>− 1

2κ
+ ωA + ωD +

F (ᾱ, θ̄)

4
,

which through algebra is equivalent to

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
>1− ρ− 1

2κ
+ ωA +

F (ᾱ, θ̄)

4
,
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where the left-hand side is type θ̄, parameter α D's utility and the right hand side is type θ̄,

parameter ᾱ D's utility. Because across parameters α ∈ {α, ᾱ} types θ attain their wartime

utility, I am able to say that

UD(σ∗(θ, α)) =UD(σ∗(θ, ᾱ))

and

UD(σ∗(θ̄, α)) >UD(σ∗(θ̄, ᾱ)),

which is a deterrence failure.

It is worthwhile mentioning that I have not been able to �nd parameters that �t the �ve

conditions of Eκ1, but I also have not been able to prove that these conditions cannot all

simultaneously exist. If in fact the �ve conditions of Eκ1 cannot all hold simultaneously,

then of Eκ1 cannot create a deterrence failure, nor should it be considered in the → part of

the proof (but it would not negate the key results).

On Eκ2:

Through the top four Eκ2 conditions, when α = α, the equilibrium is discussed under

Case 5 in Proposition 5, and when α = ᾱ, the equilibrium is discussed under Case 3. The

�fth condition de�nes

F (α, θ̄)

4
− F (α, θ)

4
>− 1

2κ
+ ωA + ωD +

F (ᾱ, θ̄)

4
,

which through algebra is equivalent to

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
>1− ρ− 1

2κ
+ ωA +

F (ᾱ, θ̄)

4
,

where the left-hand side is type θ̄, parameter α D's utility and the right hand side is type θ̄,

parameter ᾱ D's utility. Because across parameters α ∈ {α, ᾱ} types θ attain their wartime

utility, I am able to say that

UD(σ∗(θ, α)) =UD(σ∗(θ, ᾱ))
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and

UD(σ∗(θ̄, α)) >UD(σ∗(θ̄, ᾱ)),

which is a deterrence failure.

An example of parameters that produce this condition are as follows: F (α, θ) = 0.001,

F (α, θ̄) = 0.005, F (ᾱ, θ) = 0.002, F (ᾱ, θ̄) = 0.4, ωD = 0.4, ωA = 0.01, ρ = 0.4, Pr(θ) = 0.01,

Pr(θ̄) = 0.99, κ = 1.

On Eκ3:

Through the top four Eκ3 conditions, when α = α, the equilibrium is discussed under

Case 5 in Proposition 5, and when α = ᾱ, the equilibrium is discussed under Case 4. Com-

paring the utilities that a capabilities (ᾱ, θ̄) attains (right hand side below) to the utility

that a capabilities (α, θ̄) attain (left hand side below) is

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
>1− ρ− ωD.

Thus, I can say

UD(σ∗(θ, α)) =UD(σ∗(θ, ᾱ))

and

UD(σ∗(θ̄, α)) >UD(σ∗(θ̄, ᾱ)),

which is a deterrence failure.

An example of parameters that produce this condition are as follows: F (α, θ) = 0.1,

F (α, θ̄) = 0.2, F (ᾱ, θ) = 0.15, F (ᾱ, θ̄) = 0.4, ωD = 0.25, ωA = 0.05, ρ = 0.2, Pr(θ) = 0.05,

Pr(θ̄) = 0.95, κ = 1.15.
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6.4.2 Proving →

When there is a deterrence failure following improvements in α, it must be that

UD(σ∗(θ, α)) ≥UD(σ∗(θ, ᾱ)) (6)

and

UD(σ∗(θ̄, α)) ≥UD(σ∗(θ̄, ᾱ)), (7)

with at least one inequality holding strictly. Proposition 5 shows, for a �xed α, �ve cases are

possible. Thus, to compare D's utility across α and ᾱ, I must consider multiple combinations

of cases. I list various outcomes across α and ᾱ; I will use the notation �Case i-Case j)� to

represent that under α the equilibrium is described under Case i (with i ∈ {1, 2, 3, 4, 5}) and
that under ᾱ the equilibrium is described under Case j (with j ∈ {1, 2, 3, 4, 5}). I am able

to limit the number of case combinations that I consider by observing that if t̂ ≤ t(θ, α)

for θ ∈ {θ, θ̄}, then t̂ < t(θ, ᾱ) (because t(θ, α) is increasing in α). Thus, I do not need to

consider the following: Case 1-Case 2, Case 1-Case 3, Case 1-Case 4, Case 1-Case 5, Case

2-Case 4, Case 2-Case 5, Case 3-Case 4, and Case 3-Case 5. Thus, I can go through the

following remaining outcomes to either (a) show that if there is a deterrence failure, then it

implies that one of the conditions outlined earlier holds, or (b) there cannot be a deterrence

failure.

Case 1-Case 1:

By the conditions of the cases, t̂ ≤ t(θ, α) across α and ᾱ. A always selects t = 1
2κ
, and D

always hassles. By the conditions of the �if� clause (i.e. if there is a deterrence failure), this

case is ruled out. Because F is increasing in α, for θ ∈ {θ, θ̄}, the following statement must

hold:

1− ρ− 1

2κ
+ ωA +

F (α, θ)

4
<1− ρ− 1

2κ
+ ωA +

F (ᾱ, θ)

4
.

This suggests that increases in α always produces better outcomes for D (the left hand side

(LHS) and right hand side (RHS) above are D's utility for α and ᾱ, respectively).

Case 2-Case 1:
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By the conditions of the cases, t̂ ∈
(
t(θ, α), t(θ̄, α)

)
and t̂ ≤ t(θ, ᾱ). A will select t(θ, α)

when α = α and t̂ when α = ᾱ, and D always hassles. By the conditions of the �if� clause

(i.e. if there is a deterrence failure), this case is ruled out. Because t̂ < t(θ, ᾱ) implies
1

2κ
< ωD + ωA + F (ᾱ,θ)

4
, the following statement must hold:

1− ρ− ωD <1− ρ− 1

2κ
+ ωA +

F (ᾱ, θ)

4
.

This suggests that increases in α always produces better outcomes for type θ D's (the LHS

and RHS above are D's utility for α and ᾱ, respectively).

Case 2-Case 2:

By the conditions of the cases, t̂ ∈
(
t(θ, α), t(θ̄, α)

)
and t̂ ∈

(
t(θ, ᾱ), t(θ̄, ᾱ)

)
, which sat-

is�es the �rst two conditions of Pκ1. A always selects t∗ = t(θ, α), and D always hassles.

The conditions of the cases imply that UA(t(θ, α), α) ≥ UA(t̂, war, α) and UA(t(θ, ᾱ), ᾱ) ≥
UA(t̂, war, ᾱ), which satis�es the third and forth conditions of Pκ1. Furthermore, because

there is a deterrence failure, I can substitute D's utilities from these cases into equations (6)

and (7) above, yielding

1− ρ− ωD ≥1− ρ− ωD,

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
≥1− ρ− ωD +

F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4
.

Because the top holds with equality, the bottom inequality must be strict. Re-writing the

bottom inequality yields F (α, θ̄)− F (α, θ) > F (ᾱ, θ̄)− F (ᾱ, θ), which is the �nal condition

in Pκ1. Thus, when there is a deterrence failure in Case 2-Case 2, the conditions de�ning

Pκ1 must hold.

Case 2-Case 3:

By the conditions of the cases, t̂ ∈
(
t(θ, α), t(θ̄, α)

)
and t̂ ∈

(
t(θ, ᾱ), t(θ̄, ᾱ)

)
, which satis�es

the �rst two conditions of Eκ1. A will select t(θ, α) when α = α and t̂ when α = ᾱ, and

D always hassles when α = α and sometimes goes to war when α = ᾱ. The conditions

of the cases imply that UA(t(θ, α), α) ≥ UA(t̂, war, α) and UA(t(θ, ᾱ), ᾱ) < UA(t̂, war, ᾱ),

which satis�es the third and forth conditions of Eκ1. Furthermore, because there is a deter-

rence failure, I can substitute D's utilities from these cases into equations (6) and (7) above,
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yielding

1− ρ− ωD ≥1− ρ− ωD

and

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
≥1− ρ− 1

2κ
+ ωA +

F (ᾱ, θ̄)

4
.

Because the top holds with equality, the bottom inequality must be strict. Re-writing the

bottom inequality yields F (α,θ̄)
4
− F (α,θ)

4
> − 1

2κ
+ωA+ωD + F (ᾱ,θ̄)

4
, which is the �nal condition

in Eκ1. Thus, when there is a deterrence failure in Case 2-Case 3, the conditions de�ning

Eκ1 must hold.

Case 3-Case 1:

By the conditions of the cases, t̂ ∈
(
t(θ, α), t(θ̄, α)

)
and t̂ ≤ t(θ, ᾱ). A will always select

t̂, and D sometimes goes to war when α = α and always hassles when α = ᾱ. By the con-

ditions of the �if� clause (i.e. if there is a deterrence failure), this case is ruled out. Because

t̂ < t(θ, ᾱ) implies 1
2κ
< ωD + ωA + F (ᾱ,θ)

4
, the following statement must hold:

1− ρ− ωD <1− ρ− 1

2κ
+ ωA +

F (ᾱ, θ)

4
.

This suggests that increases in α always produces better outcomes for type θ D's (the LHS

and RHS above are D's utility for α and ᾱ, respectively).

Case 3-Case 2:

By the conditions of the cases, t̂ ∈
(
t(θ, α), t(θ̄, α)

)
and t̂ ∈

(
t(θ, ᾱ), t(θ̄, ᾱ)

)
, which sat-

is�es the �rst two conditions of Pκ4. A will select t̂ when α = α and t(θ, ᾱ) when α = ᾱ,

and D sometimes goes to war when α = α and always hassles when α = ᾱ. The conditions

of the cases imply that UA(t̂, war, α) ≥ UA(t(θ, α), α) and UA(t(θ, ᾱ), ᾱ) ≥ UA(t̂, war, ᾱ),

which satis�es the third and forth conditions of Pκ4. Furthermore, because there is a deter-

rence failure, I can substitute D's utilities from these cases into equations (6) and (7) above,

yielding

1− ρ− ωD ≥1− ρ− ωD
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and

1− ρ− 1

2κ
+ ωA +

F (α, θ̄)

4
≥1− ρ− ωD +

F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4

Because the top holds with equality, the bottom inequality must be strict. Re-writing the

bottom inequality yields − 1
2κ

+ωA+ωD + F (α,θ̄)
4

> F (ᾱ,θ̄)
4
− F (ᾱ,θ)

4
, which is the �nal condition

in Pκ4. Thus, when there is a deterrence failure in Case 3-Case 2, the conditions de�ning

Pκ4 must hold.

Case 3-Case 3:

By the conditions of the cases, t̂ ∈
(
t(θ, α), t(θ̄, α)

)
and t̂ ∈

(
t(θ, ᾱ), t(θ̄, ᾱ)

)
. A always

selects t = 1
2κ
, and D sometimes goes to war when α = α and α = ᾱ. By the conditions

of the �if� clause (i.e. if there is a deterrence failure), this case is ruled out. Because F is

increasing in α, the following statement must hold:

1− ρ− 1

2κ
+ ωA +

F (α, θ̄)

4
<1− ρ− 1

2κ
+ ωA +

F (ᾱ, θ̄)

4
.

This suggests that increases in α produces better outcomes for type θ̄ D's (the LHS and RHS

above are D's utility for α and ᾱ, respectively).

Case 4-Case 1:

By the conditions of the cases, t̂ ≥ t(θ̄, α) and t̂ ≤ t(θ, ᾱ). A will select t(θ̄, α) when

α = α and t̂ when α = ᾱ, and D sometimes goes to war when α = α and always hassles

when α = ᾱ. By the conditions of the �if� clause (i.e. if there is a deterrence failure), this

case is ruled out. Because t̂ < t(θ, ᾱ) implies 1
2κ
< ωD + ωA + F (ᾱ,θ)

4
, the following statement

must hold:

1− ρ− ωD <1− ρ− 1

2κ
+ ωA +

F (ᾱ, θ)

4
.

This suggests that increases in α always produces better outcomes for type θ D's (the LHS

and RHS above are D's utility for α and ᾱ, respectively).

Case 4-Case 2:

By the conditions of the cases, t̂ ≥ t(θ̄, α) and t̂ ∈
(
t(θ, ᾱ), t(θ̄, ᾱ)

)
. A will select t(θ̄, α)
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when α = α and t(θ, ᾱ) when α = ᾱ, and D sometimes goes to war when α = α and always

hassles when α = ᾱ. By the conditions of the �if� clause (i.e. if there is a deterrence failure),

this case is ruled out. Because F is increasing in θ, the following statement must hold:

1− ρ− ωD <1− ρ− ωD +
F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4

This suggests that increasing in α always produces better outcomes for types θ̄ D (the LHS

and RHS above are D's utility for α and ᾱ, respectively).

Case 4-Case 3:

By the conditions of the cases, t̂ ≥ t(θ̄, α) and t̂ ∈
(
t(θ, ᾱ), t(θ̄, ᾱ)

)
. A will select t(θ̄, α)

when α = α and t̂ when α = ᾱ, and D sometimes goes to war when α = α and when α = ᾱ.

By the conditions of the �if� clause (i.e. if there is a deterrence failure), this case is ruled

out. Because t̂ < t(θ̄, ᾱ) implies 1
2κ
< ωD + ωA + F (ᾱ,θ̄)

4
, the following statement must hold:

1− ρ− ωD <1− ρ− 1

2κ
+ ωA +

F (ᾱ, θ̄)

4
.

This suggests that increases in α always produces better outcomes for type θ̄ D's (the LHS

and RHS above are D's utility for α and ᾱ, respectively).

Case 4-Case 4: All types do the same.

By the conditions of the cases, t̂ ≥ t(θ̄, α) and t̂ ≥ t(θ̄, ᾱ). A will select t(θ̄, α) when

α = α and t(θ̄, ᾱ) when α = ᾱ, and D sometimes goes to war when α = α and when α = ᾱ.

By the conditions of the �if� clause (i.e. if there is a deterrence failure), this case is ruled

out. Because all types θ and θ̄ D attain their wartime utility across α = α and α = ᾱ,

improvements in α produce no change in D's utility.

Case 4-Case 5:

By the conditions of the cases, t̂ ≥ t(θ̄, α) and t̂ ≥ t(θ̄, ᾱ). A will select t(θ̄, α) when

α = α and t(θ, ᾱ) when α = ᾱ, and D sometimes goes to war when α = α and always hassles

when α = ᾱ. By the conditions of the �if� clause (i.e. if there is a deterrence failure), this
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case is ruled out. Because F is increasing in θ, the following statement must hold:

1− ρ− ωD <1− ρ− ωD +
F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4

This suggests that increasing in α always produces better outcomes for types θ̄ D (the LHS

and RHS above are D's utility for α and ᾱ, respectively).

Case 5-Case 1:

By the conditions of the cases, t̂ ≥ t(θ̄, α) and t̂ ≤ t(θ, ᾱ). A will select t(θ, α) when

α = α and t̂ when α = ᾱ, and D sometimes goes to war when α = α and always hassles

when α = ᾱ. By the conditions of the �if� clause (i.e. if there is a deterrence failure), this

case is ruled out. Because t̂ < t(θ, ᾱ) implies 1
2κ
< ωD + ωA + F (ᾱ,θ)

4
, the following statement

must hold:

1− ρ− ωD <1− ρ− 1

2κ
+ ωA +

F (ᾱ, θ)

4
.

This suggests that increases in α always produces better outcomes for type θ D's (the LHS

and RHS above are D's utility for α and ᾱ, respectively).

Case 5-Case 2:

By the conditions of the cases, t̂ ≥ t(θ̄, α) and t̂ ∈
(
t(θ, ᾱ), t(θ̄, ᾱ)

)
which satis�es the

�rst two conditions of Pκ2. A will select t(θ, α) when α = α and t(θ, ᾱ) when α = ᾱ, and

D sometimes goes to war when α = α and always hassles when α = ᾱ. The conditions

of the cases imply that UA(t(θ, α), α) ≥ UA(t(θ̄, α), α) and UA(t(θ, ᾱ), ᾱ) ≥ UA(t̂, war, ᾱ),

which satis�es the third and forth conditions of Pκ2. Furthermore, because there is a deter-

rence failure, I can substitute D's utilities from these cases into equations (6) and (7) above,

yielding

1− ρ− ωD ≥1− ρ− ωD,

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
≥1− ρ− ωD +

F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4
.

Because the top holds with equality, the bottom inequality must be strict. Re-writing the

bottom inequality yields F (α, θ̄)− F (α, θ) > F (ᾱ, θ̄)− F (ᾱ, θ), which is the �nal condition

in Pκ2. Thus, when there is a deterrence failure in Case 5-Case 2, the conditions de�ning
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Pκ2 must hold.

Case 5-Case 3:6

By the conditions of the cases, t̂ ≥ t(θ̄, α) and t̂ ∈
(
t(θ, ᾱ), t(θ̄, ᾱ)

)
which satis�es the �rst

two conditions of Eκ2. A will select t(θ, α) when α = α and t̂ when α = ᾱ, and D always

hassles when α = α and sometimes goes to war when α = ᾱ. The conditions of the cases

imply that UA(t(θ, α), α) ≥ UA(t(θ̄, α), α) and UA(t(θ, ᾱ), ᾱ) < UA(t̂, war, ᾱ), which satis�es

the third and forth conditions of Eκ2. Furthermore, because there is a deterrence failure, I

can substitute D's utilities from these cases into equations (6) and (7) above, yielding

1− ρ− ωD ≥1− ρ− ωD,

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
≥1− ρ− 1

2κ
+ ωA +

F (ᾱ, θ̄)

4
.

Because the top holds with equality, the bottom inequality must be strict. Re-writing the

bottom inequality yields F (α,θ̄)
4
− F (α,θ)

4
> − 1

2κ
+ωA+ωD + F (ᾱ,θ̄)

4
, which is the �nal condition

in Eκ2. Thus, when there is a deterrence failure in Case 5-Case 3, the conditions de�ning

Eκ2 must hold.

Case 5-Case 4:

By the conditions of the cases, t̂ ≥ t(θ̄, α) and t̂ ≥ t(θ̄, ᾱ) which satis�es the �rst two

conditions of Eκ3. A will select t(θ, α) when α = α and t(θ̄, ᾱ) when α = ᾱ, and D always

hassles when α = α and sometimes goes to war when α = ᾱ. The conditions of the cases

imply that UA(t(θ, α), α) ≥ UA(t(θ̄, α), α) and UA(t(θ, ᾱ), ᾱ) < UA(t(θ̄, ᾱ), ᾱ), which satis�es

the third and forth conditions of Eκ3. Note that here a deterrence failure occurs within this

case without any further conditions needed; I substitute D's utilities into expressions (6) and

(7), yielding

1− ρ− ωD ≥1− ρ− ωD

and

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
≥1− ρ− ωD,

6Note: a deterrence failure may not be possible here � see above.
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where the bottom inequality always holds strictly.

Case 5-Case 5:

By the conditions of the cases, t̂ ≥ t(θ̄, α) and t̂ ≥ t(θ̄, ᾱ) which satis�es the �rst two

conditions of Pκ3. A will select t(θ, α) when α = α and t(θ, ᾱ) when α = ᾱ, and D always

hassles when α = α and sometimes goes to war when α = ᾱ. The conditions of the cases

imply that UA(t(θ, α), α) ≥ UA(t(θ̄, α), α) and UA(t(θ, ᾱ), ᾱ) ≥ UA(t(θ̄, ᾱ), ᾱ), which satis�es

the third and forth conditions of Pκ3. Furthermore, because there is a deterrence failure, I

can substitute D's utilities from these cases into equations (6) and (7) above, yielding

1− ρ− ωD ≥1− ρ− ωD,

1− ρ− ωD +
F (α, θ̄)

4
− F (α, θ)

4
≥1− ρ− ωD +

F (ᾱ, θ̄)

4
− F (ᾱ, θ)

4
.

Because the top holds with equality, the bottom inequality must be strict. Re-writing the

bottom inequality yields F (α, θ̄)− F (α, θ) > F (ᾱ, θ̄)− F (ᾱ, θ), which is the �nal condition

in Pκ3. Thus, when there is a deterrence failure in Case 5-Case 5, the conditions de�ning

Pκ3 must hold.

6.5 Other Results

In the text, I found that increases in θ always produce better results for D. Here, examining

all �ve cases in Proposition 5, a similar result holds. Thus, once again, a deterrence failure

can arise from improved public hassling capabilities, but cannot arise from improved private

hassling capabilities.

7 On the De�nition of Deterrence Failure

In the paper, I formally de�ne deterrence failure as the following:

De�nition : Improvements in publicly observed hassling capabilities produce a deterrence

failure when, UD (σ∗(θ, α)) ≥ UD (σ∗(θ, ᾱ)) for all θ ∈ Θ and UD (σ∗(θ, α)) > UD (σ∗(θ, ᾱ))

for some θ ∈ Θ.

By this de�nition, a deterrence failure occurs when all types of D perform weakly worse

following an improvement in α, with at least some types doing strictly worse. As an alter-
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native de�nition, I could have de�ned a deterrence failure as D attaining a lower ex-ante

expected utility. I select the de�nition I do because I am interested in cases where improve-

ments in hassling capabilities lead to overall worse outcomes for D. The de�nition that I

adopt is stricter than the alternate-expected-utility de�nition, and the alternate de�nition

(i.e. the expected utility de�nition) fails to exclude cases where some types D attain a better

outcome following a deterrence failure. As an example of this, one plausible outcome in the

game is that an improvement in public hassling capability results in 20% less war (which is

good for some types of D) but a 50% lower expected utility for some types of D (which is bad

for those D's). This is a mixed outcome for D, and this could be classi�ed as a deterrence

failure under the weaker de�nition, but is never classi�ed as a deterrence failure under the

stricter de�nition.

Furthermore, it is not clear why calculating D's ex-ante expected utility is the right measure

when, in all likelihood, D knows something about their private type upon entering a con�ict.

In the example above, if D knew they were likely a type that would avoid war following

an improvement in public hassling capabilities, D would want the improvement in hassling

capabilities to occur despite the weaker de�nition implying that an improving hassling ca-

pabilities would create a deterrence failure. Thus, to exclude cases where D would actually

want a deterrence failure to occur, I adopt the stricter de�nition of deterrence failure for my

analysis.7

Part II

Analysis for Models with a Convex Set

of Hassling Levels

8 Example Model with θ as a Continuum

This model is slightly di�erent from the models in the text as here D also has a continuum

of types θ ∈ [θ, θ̄] ⊂ R+. In order to accommodate this assumption, I need to use a more

de�ned cost function for D than what I did in the text. And, in better de�ning D's costs, the

7The stricter de�nition of deterrence failure that I use also satis�es the min-max heuristic.

38



model below only lends itself to the predictability mechanism; a di�erent set of functional

form assumptions can produce the emboldening mechanism.

8.1 Game Form

As it was earlier, States A and D are in a modi�ed, crisis bargaining game without explicit

bargaining. Speci�cally, I treat any bargaining at the back end of the model as a black-box.

This can accommodate a wide range of possible bargained outcomes.

1. Nature selects θ ∈ [θ, θ̄] ⊂ R+, which designates D's type. Realizations of θ are

uniformly distributed.

2. State A selects arming technology level t ≥ t > 0.8

3. State D can either go to �war� by setting w = 1 or not go to war (setting w = 0) and

selecting some level of hassling h ∈ H, where H is a closed set with lower bound h > 0

, and where D selecting h = h can be thought of as �accepting.� Going to war produces

payo�s WA and WD for states A and D (respectively). Choosing some level of hassling

h ∈ H (i.e. accepting or hassling) yields payo�s XA + t
h
9 and XD − t

h
−CD(h, θ, α) for

states A and D (respectively).

A's and D's utility functions can be written as UA(t;w, h, α) and UD(w, h; t, α, θ), where,

when war does not occur, take values

UA(t; 0, h, α) =XA +
t

h

UD(0, h; t, α, θ) =XD −
t

h
− CD(h, θ, α),

and when war does occur take values

UA(t; 1, h, α) =WA

UD(1, h; t, α, θ) =WD.

To summarize the expected utilities, the expressions XA + t
h
and XD − t

h
− CD(h, θ, α) are

the values that A and D receive by not going to war and letting the investments in rising

technologies and hassling come to fruition. CD(h, θ, α) are the costs that D faces from has-

sling. To capture that hassling is costly, I assume CD is increasing and strictly convex in h.

8It is possible to let t = 0, though this adds technical considerations that do not add value to the model.
9Results for a model where A invests in costs is available upon request.
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To capture that greater values of parameters θ and α imply lower costs of hassling, I assume

CD is di�erentiable and weakly decreasing in α and θ for all h.

Putting aside the costs from hassling and investing, the XA + t
h
and XD − t

h
terms rep-

resent bargained outcomes to the game. Essentially, I am treating the non-war outcomes

as a black-box, where, without investing in the rising technology (t = 0), states would

reach some expected political settlement XA and XD, and where the selected levels of rising

technology and hassling shift this settlement. I assume that if A does not invest in the

rising technology (setting t = 0), both states prefer not going to war, or XA > WA and

XD−CD(h, θ, α) > WD for all θ and α; this implies that war is not inevitable, but rather, if

A selects too great an investment in rising technology t, D may �nd it optimal to go to war

with A before the investment in rising technology is realized.

Unlike the model in the text, here I treat any bargaining after the third-stage as a black box.

The bene�t of doing so is that this framework can accommodate a wide range of possible

bargaining protocols or possible outcomes to some game form.10 Ultimately, adopting this

framework allows me to focus on the most relevant parts of the game: if rising technology

is allowed to come to fruition, it will strengthen A, D can degrade this rising technology

through hassling, and D can prevent the power shift by going to war today.

The actions taken in the game depend the observed and unobserved components of D's

capabilities. A strategy for State D in the game is a mapping from its capabilities to its

action space, or σD : (A,Θ) → {war, notwar} × H. Because State A does not know the

value of θ, A's strategy is a mapping from the known parameter α, or σA : A → T . I let σ
denote a pair of strategies or σ = (σA, σD), and I employ the equilibrium concept Bayesian

Nash Equilibrium (Meyerson 1985), where a strategy pro�le σ∗ = (σA, σD) constitutes a

Bayesian equilibrium if σD(α, θ) is a best response to σA, and σA(α) is a best response to σD

based on the known type and the common probability prior f(·). For ease, I limit myself to

pure strategy equilibria.

8.2 Equilibrium Type, Assumptions, and Deterrence Failure

The actions taken in the game depend the observed and unobserved components of D's ca-

pabilities. A strategy for State D in the game is a mapping from its capabilities to its action

10For example, this framework easily accommodates the ultimatium bargaining framework adopted in the
text with D making the �nal o�er, but also would accomodate A making the �nal o�er or a randomizing
procedure that gives A or D the �nal o�er (so long that the �nal realized P ∈ (ρ, 1) and x ∈ (0, 1).
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space, or σD : (A,Θ) → {war, notwar} × H. Because State A does not know the value of

θ, A's strategy is a mapping from the known parameter α, or σA : A → T . I let σ denote

a pair of strategies or σ = (σA, σD), and I employ the equilibrium concept Bayesian Nash

Equilibrium (Meyerson 1985), where a strategy pro�le σ∗ = (σA, σD) constitutes a Bayesian

equilibrium if σD(α, θ) is a best response to σA, and σA(α) is a best response to σD based

on the known type and the common probability prior f(·). I let h∗, w∗, and t∗ denote equi-
librium actions. For ease, I limit myself to pure strategy equilibria.

At this point, it is possible to formalize a �deterrence failure� for D. I claim that improve-

ments in public hassling capabilities result in a deterrence failure when a change from α to

α′ with α < α′ results in a lower utility for D for all possible types θ.

I make two assumptions to simplify the analysis. I assume t > h(α+θ)−1/2, and (XD−WD)2(α+θ)
4

≥
t . This simpli�es the analysis below by ruling out cases where A can select a range of t's

that induce D to accept. While including this could bene�t the model by o�ering a more

complete analysis of parameter spaces, doing so o�ers no value to the key results (that the

predictability mechanism is the only way a deterrence failure can arise here).

De�nition: Improvements in hassling capabilities result in a deterrence failure when,

for α < α′, UD (w∗, h∗; t∗, θ, α′) ≤ UD (w∗, h∗; t∗, θ, α) for all θ ∈ Θ.

8.3 Equilibrium and Results

There are two possible equilibria outcomes: one where A never risks war, and one where

A sometimes risks war. Note that from the limitations on t, A will never try to get A to

�accept.� What determines this is A's payo�s, which are fairly complicated here. To express

the equilibrium simply, I de�ne UA(t̂) = XA +
2

(
(XD−WD)2(α+θ)

4

)1/2

θ̄−θ

(
(α + θ̄)1/2 − (α + θ)1/2

)
and, de�ning t̃ = (α+θ̄)(XD−WD)4

(4(WA−XA)−2(XD−WD))2
and

UA(t̃) =
(
XAθ̄ −WAθ + (WA −XA)

(
4t̃ (XD −WD)

−2 − α
)

+ 2(t̃)1/2
(
α+ θ̄

)1/2 − 2t̃ (XD −WD)
−1
)

1
θ̄−θ .

Proposition 7:

Case 1: Under the assumptions above and UA(t̂) ≥ UA(t̃), the following actions are part

of the perfect Bayesian Nash Equilibrium.
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• A selects the largest technology level that does not induce war, or

t∗ =
(XD −WD)2 (α + θ)

4
.

• Fix a selected level of rising technology t. For value θ̃ = 4t
(XD−WD)2

− α, if D is type

θ < θ̃ then they declare war (set w = 1), and if D is type θ ≥ θ̃ then they select hassling

level h∗ = t1/2(α + θ)1/2 and set w = 0.

• For D, each type θ ∈ [θ, θ] has expected utility

UD(θ, α) =XD −
(XD −WD) (α + θ)

1
2

(α + θ)1/2
.

Case 2: Under the assumptions above and UA(t̂) < UA(t̃), the following actions are part of

the perfect Bayesian Nash Equilibrium.

• A selects the largest technology level that does not induce war, or

t∗ =
(α + θ̄) (XD −WD)4

(4(WA −XA)− 2 (XD −WD))2 .

• Fix a selected level of rising technology t. For value θ̃ = 4t
(XD−WD)2

− α, if D is type

θ < θ̃ then they declare war (set w = 1), and if D is type θ ≥ θ̃ then they select hassling

level h∗ = t1/2(α + θ)1/2 and set w = 0.

• For D, each type θ ∈ [θ, θ] has expected utility

UD =

XD − (α+θ̄)1/2

(α+θ)1/2

(
(XD−WD)2

|2(WA−XA)−(XD−WD)|

)
if t∗ ≤ (cA+cD)2(α+θ)

4
,

WD otherwise.

The following observations describe how improvements in D's known hassling capabilities α

a�ect what occurs in equilibrium.

Observation: Consider an α, α′ where α < α′, and both values satisfy the conditions

of Case 1. D experiences a deterrence failure following a shift from α to α′.

42



The Observation above can be derived by taking �rst order conditions on UD.
11 In this

equilibrium, A is selecting a level of rising technology that would make a type θ D indi�erent

between war and some level of hassling. Thus, as D's hassling capabilities improve, D will

hassle more, and A will select a greater level of rising technology. However, in aggregate,

these changes lead to worse outcomes for D because the change from α to α′ makes D more

predictable. As α increases, it shrinks the spread of h∗ across types [θ, θ̄]. Thus, when A

selects a t that makes a type θ indi�erent between war and hassling (as it is optimal for A

to do under the conditions above), this selected t is closer to the technology investment that

would make a type θ ∈ (θ, θ̄] indi�erent between war and a level of hassling, thus granting

A more of the bargaining surplus. Within this model and this case, improvements in α

decrease the relevance of the private parameter and make D more predictable, resulting in a

deterrence failure for D.

8.4 Deriving Proposition 7 Equilibrium

When D selects a hassling level, D's decision will be based on the selected t and parameters

α and θ. Any type θ D that hassles faces concave optimization problem

h∗ ∈ argmaxh≥h
{
XD −

t

h
− h

(α + θ)

}
,

I take �rst-order conditions with respect to h to identify the optimal level of hassling h∗. So

long that h∗ ≥ h for a selected t, this yields

h∗ =t1/2(α + θ)1/2.

Using h∗, I re-write D's utility in terms of the selected t and parameters α and θ, also allowing

for war. This is

UD =

XD − 2t1/2

(α+θ)1/2
if t ≤ (XD−WD)2(α+θ)

4
,

WD otherwise.

I proceed as follows. A will select a level of rising technology that induces D to hassle

or declare war, or some combination of these outcomes. To determine what t A selects, I

compare A's utilities across possible outcomes. Upon determining A's optimal strategy, I

can run comparative statics on this equilibrium.

11First order conditions here are d
dαU

D = − 1
2 (XD −WD) (α+ θ)

−1/2
(α+ θ)−1/2

(
1− (α+ θ)(α+ θ)−1

)
.
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8.4.1 Outcome 1: D always hassles

Consider when A selects a level of investment in rising technology t such that t ∈ [t, (XD−WD)2(α+θ)
4

].

For this selected investment level, D will not declare war. With D always hassling, for a t

that falls in the range above, A optimizes

t ∈argmax

{∫ θ̄

θ

(
XA +

t

h∗

)
f(θ)dθ

}
,

which can be re-written as

UA(t) =XA +
2t1/2

θ̄ − θ
(
(α + θ̄)1/2 − (α + θ)1/2

)
.

Note that this is strictly increasing in t; therefore, within this range, A will select the largest

t = (XD−WD)2(α+θ)
4

, which is the t that would make a type θ D indi�erent between war and

hassling.

I can de�ne t̂ = (XD−WD)2(α+θ)
4

and A's utility here as

UA =XA +
2t̂1/2

θ̄ − θ
(
(α + θ̄)1/2 − (α + θ)1/2

)
.

Because here D always hassles, for any type θ ∈ Θ, D's utility is

UD =XD − (XD −WD) (α + θ)1/2 (α + θ)−1/2 .

Taking �rst order conditions with respect to α yields

d

dα
UD = −1

2
(XD −WD) (α + θ)−1/2 (α + θ)−1/2

(
1− (α + θ)(α + θ)−1

)
.

Because (XD −WD) > 0 and (α + θ)(α + θ)−1 < 1, then this expression is decreasing in α.

8.4.2 Outcomes 2&3: D Sometimes Hassles, Sometimes Goes to War, & D

Always Goes to War

Consider the case where A selects a t ≤ (XD−WD)2(α+θ̄)
4

and t ≥ (XD−WD)2(α+θ)
4

. For this

selected investment level, D will either hassle or declare war. For a �xed t that falls in this

range, I can de�ne a type θ̃ that represents the cut-point type that is indi�erent between

hassling and declaring war; for any θ ≥ θ̃, D will hassle, and for any θ < θ̃, D will declare
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war. I derive this condition comparing the war payo� to the hassling payo� (both for a �xed

t). This is θ̃ = 4t
(XD−WD)2

− α.

For a t that falls in the range above, A has optimization problem

t ∈argmax


∫ θ̄

4t

(XD−WD)2
−α

(
XA +

t1/2

(α + θ)1/2

)
1

θ̄ − θ
dθ +

∫ 4t

(XD−WD)2
−α

θ

(WA)
1

θ̄ − θ
dθ

 .

The term
∫ θ̄

4t

(XD−WD)2
−α (XA) 1

θ̄−θdθ becomes XA
θ̄−4t(XD−WD)−2−α

θ̄−θ .

The term
∫ θ̄

4t

(XD−WD)2
−α

(
t1/2

(α+θ)1/2

)
1
θ̄−θdθ becomes

2t1/2(α+θ̄)
1/2
−2(t)(XD−WD)−1

θ̄−θ

The term
∫ 4t

(XD−WD)2
−α

θ (WA) 1
θ̄−θdθ becomes WA ∗ 4t(XD−WD)−2−α−θ

θ̄−θ . The term

Following integration, I can express the above as

t ∈argmax
{(

XAθ̄ −WAθ + (WA −XA)
(

4t (XD −WD)
−2 − α

)
+ 2t1/2

(
α+ θ̄

)1/2 − 2t (XD −WD)
−1
) 1

θ̄ − θ

}
.

I can take �rst order conditions of the above with respect to t, which yields

∂UA
∂t

=
(α + θ̄)1/2

t
1
2

− 4(WA −XA)

(XD −WD)2 −
2

(XD −WD)

or

∂UA
∂t

=
(α + θ̄)1/2

t
1
2

− 4(WA −XA)− 2 (XD −WD)

(XD −WD)2 .

It is possible to solve for t. Setting the equation equal to zero and solving yields

t∗ =
(α + θ̄) (XD −WD)4

(4(WA −XA)− 2 (XD −WD))2 .

For ease, I de�ne t̃ = (α+θ̄)(XD−WD)4

(4(WA−XA)−2(XD−WD))2
and A's utility from this case as

UA(t̃) =
(
XAθ̄ −WAθ + (WA −XA)

(
4t̃ (XD −WD)

−2 − α
)

+ 2(t̃)1/2
(
α+ θ̄

)1/2 − 2t̃ (XD −WD)
−1
) 1

θ̄ − θ
.

I can also de�ne D's utility. For the types of D not going to war
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UD =XD −
2

(α + θ)1/2

(
(α + θ̄)1/2 (XD −WD)2

|4(WA −XA)− 2 (XD −WD) |

)

=XD −
(α + θ̄)1/2

(α + θ)1/2

(
(XD −WD)2

|2(WA −XA)− (XD −WD) |

)

Taking �rst order conditions yields

d

dα
UD = −1

2

(
(XD −WD)2

|2(WA −XA)− (XD −WD) |

)(
α + θ̄

)−1/2
(α + θ)−1/2

(
1− (α + θ̄)(α + θ)−1

)
.

Because
(

(XD−WD)2

|2(WA−XA)−(XD−WD)|

)
> 0 and (α+ θ̄)(α+θ)−1 > 1, then this expression is increas-

ing in α.

9 General Hassling Game Analysis

In this section, I present a general results for hassling games that (a) can have a continuum

of degrees of hassling, and (b) that have a more general game form. Every game in the text

falls under this framing.

9.1 De�ning Hassling Games Broadly

Here I characterize a broad class of �hassling games.� In the spirit of the discussion in the

body of the text, this general class of games attempts to speak to the following dynamic:

State A wants to invest in the rising technology to improve their bargaining position, but,

because θ is private, A does not know how much they can invest before State D starts has-

sling to degrade A's investment, or before D goes to war to prevent A's investment from

coming to fruition. As I characterize them, hassling games have the following ingredients.

At the onset, nature assigns θ ∈ Θ, which designates D's type (respectively). The real-

ization of θ with parameter α ∈ A constitutes D's hassling capabilities. D knows nature's

selection θ, but A does not. Both actors observe α and know probability distribution f(·)
over the set Θ, where f(θ) > 0 for all θ ∈ Θ. As a note, because the parameter α ultimately

is important for analysis, I will include references to parameter α in settings where it would
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not typically be included.

I denote the game form G to describe a hassling game. As is standard, the game form

de�nes a set of actions and an outcome function g that maps actions to outcomes. I describe

four sets of actions. State A selects some level of investment in rising technology t ∈ T ⊂ R.
State D selects some level of hassling h ∈ H ⊂ R. And both states each select some vector

of actions aA ∈ AA and aD ∈ AD that will determine how any sort of bargaining will play

out and if the players will go to war.

The outcome function g(t, h, aA, aD) maps to two kinds of outcomes: one outcome where

actors go to war, and another outcome where war is not initially declared, the selected

levels of rising technology and hassling are allowed to be realized, and then states enter

some crisis bargaining that is in�uenced by the hassling and rising technology levels. For

ease, I decompose outcome function g. When states go to war, war occurs before the has-

sling or rising technology come to fruition, and states receive their wartime payo�s WA and

WD.
12 When states do not go to war, they receive payo�s V g

A(h, t, aA, aD) − Cg
A(h, t) and

V g
D(h, t, aA, aD)−Cg

D(h, α, θ). The V g functions de�ne, for a speci�c outcome function g, the

value each state attains through future bargaining that is in�uenced by the rising technology

and hassling. To capture the dynamics of t and h described earlier, V g
A is increasing in t and

decreasing in h, while V g
D is increasing in h and decreasing in t (in all cases weakly).13 The Cg

functions denote the costs each state attains from hassling and the rising technology. State

A incurs costs from both hassling and investing in the rising technology, making CA weakly

increasing in h and t. State D incurs costs from hassling, making CD weakly increasing in h,

and CD is strictly decreasing in the parameter and type (α and θ, respectively).14 Finally,

πg : (AA, AD)→ {0, 1} is a function that maps from actions aA and aD to the decision to go

to war. The expected utilities from a given action pro�le are

ugA(aA, t, aD, h) =(1− πg(aA, aD))WA + πg(aA, aD) (V g
A(h, t, aA, aD)− Cg

A(t, h)) (8)

12This assumption is distinct from most applications of mechanism design in international relations where
a state's private type a�ects their wartime payo� (see Banks 1991 and Fey and Ramsay 2011).

13One way to interpret the V function is that, after the rising technology and hassling comes to fruition,
enter a new round of bargaining, where t and h a�ect A's and D's future bargaining positions. This is
discussed in Example 2 below.

14This is a departure from several previously considered models that had CD weakly decreasing in α and
θ (speci�cally when h = h, the minimum of set H).
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and

ugD(aD, h, aA, t |α, θ) =(1− πg(aA, aD))WD + πg(aA, aD) (V g
D(h, t, aA, aD)− Cg

D(h, α, θ)) .

(9)

The actions taken in the game depend the observed and unobserved components of D's

capabilities. A strategy for State D in the game is a mapping from their capabilities

to their action space, or σD : (A,Θ) → (AD,H). Because State A does not know the

value of θ, A's strategy is as mapping only from the known parameter α, or σA : (A) →
(AA, t). Thus together, a strategy pro�le (σA, σD) and capabilities (α, θ) generate a likeli-

hood of war (πg(σA(α), σD(α, θ)) and a payo� from not going to war (V g
D(σA(α), σD(α, θ))−

Cg
D(σD(α, θ), α, θ) and V g

A(σA(α), σD(α, θ)) − Cg
A(σA(α), σD(α, θ))). I let σ denote a pair of

strategies or σ = (σA, σD), and I employ the equilibrium concept Bayesian Nash Equilibrium

(Meyerson 1985), where a strategy pro�le σ∗ = (σA, σD) constitutes a Bayesian equilibrium

if σD(α, θ) is a best response to σA, and σA(α) is a best response to σD based on the known

parameter and the common probability prior f(·). I limit my analysis to pure strategy equi-

libria. I de�ne for a given equilibrium σ∗ to a given game form G, UD(θ, α) and UA(θ, α) are

the expected utilities, or

UD(θ, α) =ugD (σ∗(α, θ) |α, θ) (10)

and

UA(α) =

∫
Θ

ugA (σ∗(α, τ)) f(τ)dτ.

With this de�ned, I can introduce the condition of interest: when a deterrence failure occurs.

9.2 Introducing the Direct Mechanism Analysis

In the paper and previous sections, I discuss speci�c equilibria to speci�c game forms. Using

the sparse structure that I de�ned above, I can discuss the general properties of Bayesian

equilibria to any game that follows that structure. For other papers utilizing mechanism

design in similar con�ict settings, see Banks (1990), Fey and Ramsay (2011), or Fey and

Kenkel (2019).

In the previous subsection � and in all the examples and general analysis in the text � I

described, for some game form G and some Bayesian equilibrium σ∗, how capabilities (α and
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θ) a�ect strategic play which a�ect outcomes and utilities through the functions πg, V g
A , V

g
D,

Cg
A and Cg

D. Instead of this �indirect� mechanism � �indirect� because type operates indirectly

on outcomes via the game form and strategies � it is possible to consider a �direct� mechanism

where state D reports their type private θ, and this type directly informs outcomes and pay-

o�s (D does not need to report α because this is common knowledge). This direct mechanism

can be thought of as State D reporting their type θ to a neutral intermediary, and then the

neutral intermediary selects the actions within game form that State A and State D would

have selected through their equilibrium σ∗. Focusing on D, instead of working through in-

direct outcome functions and strategies to the hassling game πg(σ∗(α, θ)), V g
D(σ∗(α, θ)), and

Cg
D(σ∗(α, θ), α, θ), the new direct mechanism considers outcome functions π(θ̃, α), VD(θ̃, α)

and CD(θ̃, θ, α), which are functions of the reported type θ̃ ∈ Θ, the true unobserved (by

A) type θ ∈ Θ, and the commonly observed parameter α ∈ A. When the outcomes and

payo�s of the components of the direct mechanism equal the respective components of the

indirect mechanism, then the direct mechanism is an �equivalent� direct mechanism (i.e.

π(θ̃, α) = πg(σ∗(α, θ)), VD(θ̃, α) = V g
D(σ∗(α, θ)), CD(θ̃|θ, α) = Cg

D(σ∗(α, θ), α, θ), and so on).

In the direct mechanism, State D's action is sending θ̃ ∈ Θ, which is a message of their

type. One could imagine that when faced with some direct mechanism, a type θ D may be

incentivised to lie about their type (i.e. send θ̃ 6= θ), as it could grant D a greater payo�

than truthfully reporting their type (i.e. send θ̃ = θ). The following de�nition and result

pertain to this issue.

De�nition : A direct mechanism is �Incentive Compatible� if and only if it is a Bayesian

Nash Equilibrium for State D to truthfully report their type. Formally, for all θ, θ̃ ∈ Θ,

(1− π(θ|α))WD + π(θ|α) (VD(θ|α)− CD(θ|θ, α)) ≥
(

1− π(θ̃|α)
)
WD + π(θ̃|α)

(
VD(θ̃|α)− CD(θ̃|θ, α)

)
.

The logic of incentive compatibility is as follows: if D can attain a greater utility by misre-

porting their type (by reporting some θ̃ 6= θ), then the mechanism is not incentive compatible.

Incentive compatible mechanisms are important due to the Revelation Principle.

Lemma 1 (Revelation Principle (Meyerson 1979)): If σ∗ is a Bayesian Nash equilibrium of

game form G, then there exists an incentive compatible direct mechanism yielding the same

outcome.

The Revelation Principle is useful here. Instead of focusing on the properties of the set

of Bayesian Nash equilibria of any game form G, it is possible to instead consider the prop-

erties of the set of equivalent incentive compatible direct mechanisms. So, if a property is
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shown for the set of all incentive compatible direct mechanisms, then this property will hold

for the set of all Bayesian Nash equilibria. This allows me to avoid discussions on a chain of

actions describing how D decided to go to war or how any kind of bargaining plays out after

hassling and rising technology are realized, and instead directly considers how the factors

that this paper is concerned with � hassling capabilities � a�ects relevant outcomes � how

well the state that developed the hassling capabilities does.

Before moving forward with the analysis, I introduce the following assumptions.

General Analysis Assumptions: For hassling game G, I assume that Cg
D(h, θ, α) is

di�erentiable in θ for all h ∈ H and α ∈ A, and that the derivative of Cg
D is uniformly

bounded, or that, for all α and h, | ∂
∂θ
Cg
D(h, θ, α)| ≤M <∞.

Voluntary Agreements (Individual Rationality) Assumption : I assume there ex-

ists an action pro�le a′D such that either π(a′D, aA) = 0 for all aA ∈ AA, or VD(h, t, aA, a
′
D)−

CD(h, α, θ) ≥ WD for all h ∈ H, t ∈ T , aA ∈ AA, θ ∈ Θ, and α ∈ A.

It is worthwhile highlighting how broad these assumptions are. On the General Analysis

Assumption, I am making no restrictions on the set of h and α, nor I am not making any of

the standard concavity assumptions, di�erentiability assumptions in h, or assumptions on

V g
D. On the Voluntary Agreements Assumption, I am simply assuming that D has the ability

to go to war to prevent an outcomes where D attains less utility than what they could get

from going to war; in other words, there is no way that D can become �stuck� in a non-war

outcome that is worse for them than war.

Finally, using the new notation of the direct mechanism, I can characterize when a de-

terrence failure occurs following improvements in hassling capabilities.

De�nition: In crisis bargaining game G with equilibrium σ∗, D experiences a deterrence

failure following a shift from α to α′ when UD (θ, α′) ≤ UD (θ, α) for all θ ∈ Θ. Additionally,

D experiences a deterrence failure following a shift from θ to θ′ when UD (θ′, α) ≤ UD (θ, α)

for all α ∈ A.
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9.3 General Results on θ

In this section, I show how changes in D's private hassling capabilities a�ect D's outcome.

In this section, I assume that, for a given α ∈ A, there exists a Bayesian Nash equilibrium.

Given the assumed existence, I �rst establish Lemma 2, which demonstrates that the like-

lihood of war is weakly decreasing in θ. I then use Lemma 2 to show Proposition 8, which

shows that D's utility must be weakly increasing in θ. This result shows that there cannot be

the case where D's private hassling capabilities improves and D does worse. In other words,

improvements in D's private hassling capabilities cannot produce a deterrence failure; this

�nding con�rms that the model-speci�c results above and in the paper are not just quirks

of the selected functional forms or game forms, but a condition that must hold in hassling

games.

I start with Lemma 2, which establishes the general properties of π(θ).

Lemma 2: Consider the set of hassling games G . Assume that there exists a pure strategy

Bayesian Nash Equilibrium for parameter α ∈ A and for all types θ ∈ ×. For θ ∈ Θ, θ′ ∈ Θ,

if θ < θ′, then π(θ′) ≥ π(θ).

Proof by contrapostive: Assume that there exists some θ ∈ Θ and θ′ ∈ Θ such that π(θ′) <

π(θ). Using incentive compatibility, I can say

π(θ′) (VD(θ′|α)− CD(θ′|θ′, α)) + (1− π(θ′))WD ≥π(θ) (VD(θ|α)− CD(θ|θ′, α)) + (1− π(θ))WD,

(11)

and

π(θ) (VD(θ|α)− CD(θ|θ, α)) + (1− π(θ))WD ≥π(θ′) (VD(θ′|α)− CD(θ′|θ, α)) + (1− π(θ′))WD.

(12)

Because I only consider pure strategies, this implies π(θ) = 1 and π(θ′) = 0. Re-writing the

incentive compatibility conditions yields

WD ≥ (VD(θ|α)− CD(θ|θ′, α)) , (13)

and

VD(θ|α)− CD(θ|θ, α) ≥WD. (14)
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Combining and simplifying the inequalities above yields

CD(θ|θ′, α) ≥CD(θ|θ, α).

Given CD is strictly decreasing in θ, this �nal condition implies that θ′ ≤ θ.

�

Having established Lemma 2, I can demonstrate that improvements in private hassling ca-

pabilities (moving from θ to θ′ with θ < θ′) always produces better results for D.

Proposition 8: Consider the set of hassling games G with Voluntary Agreements. As-

sume that there exists a pure strategy Bayesian Nash Equilibrium for parameter α ∈ A and

for all types θ ∈ ×. For θ ∈ Θ, θ′ ∈ Θ, if θ < θ′, then U(θ′) ≥ U(θ).

Proof by contrapostive: Suppose UD(θ′, α) < UD(θ, α). This implies

π(θ) (VD(θ|α)− CD(θ|θ, α)) + (1− π(θ))WD >π(θ′) (VD(θ′|α)− CD(θ′|θ′, α)) + (1− π(θ′))WD.

I can simplify the above by considering the di�erent values that π can take. I proceed by

cases. By Lemma 2, I only need to consider the three cases listed below.

Case 1: π(θ′) = π(θ) = 0.

In this case, the �if � clause implies

WD >WD,

which is not possible.

Case 2: π(θ′) = 1 and π(θ) = 0.

In this case, the �if � clause implies

WD >VD(θ′|α)− CD(θ′|θ′, α),
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which violates the Voluntary Agreements assumption.

Case 3: π(θ′) = 1 and π(θ) = 1.

In this case, the �if � clause implies

VD(θ|α)− CD(θ|θ, α) >VD(θ′|α)− CD(θ′|θ′, α).

Using incentive compatibility, I can say

VD(θ|α)− CD(θ|θ, α) >VD(θ|α)− CD(θ|θ′, α).

Simplifying the above gives

CD(θ|θ′, α) >CD(θ|θ, α).

Because because CD(θ̃|θ, α) is decreasing in true type θ, the above implies that θ′ < θ.

�.

9.4 General Results on α

In this section, I can de�ne the necessary conditions for a deterrence failure following a shifts

in α. This is somewhat more di�cult to accomplish because changes in α can produce shifts

in how A plays the game. While before I was able to derive how shifts in θ a�ect D's util-

ity without actually characterizing D's utility (or using the General Analysis Assumptions),

here I cannot do the same, and must add additional structure and utilize the Milgrom Segal

(2003) envelope theorem result.

At this point, I introduce two ways that A's choices in the hassling game G can in�u-

ence the �nal outcomes of D's utility. These two ways characterize how A plays the game

and o�ers some simpli�cation to the conditions for a deterrence failure below. Because I

will be working with the direct mechanism for the rest of the game, I provide the following

de�nitions in terms of the direct mechanism.

De�nition: In crisis bargaining game G with equilibrium σ∗, A is �unconstrained � in

parameter α ∈ A when UD(θ, α) = WD.
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A is unconstrained when A is not su�ciently deterred from investing in the rising tech-

nology. As I have de�ned type, type θ incurs the greatest costs from hassling, and thus,

for a given t, is the least willing to hassle and the most willing to go to war. When A

is �unconstrained,� it implies that A either selects a level rising technology that induces a

D with capabilities (θ, α) to go to war (as it was in Case 2 in Proposition 1), or selects a

level of rising technology that induces D's with capabilities (θ, α) to optimally select a level

of hassling that makes them indi�erent between war and non-war outcomes (as it was in

Case 1 in Proposition 1).15 When would A be �constrained�? In the example where A faces

costs to selecting t, sometimes A was constrained because their costs from developing the ris-

ing technologies were too high to justify selecting a t that gave type θ D their wartime payo�.

De�nition: In crisis bargaining game G with equilibrium σ∗, A �avoids war � if, for

all θ ∈ Θ, π(θ, α) = 1.

When A �avoids war,� A is not willing to select a level of rising technology t that will

ever result in D responding with war. If, for α and α′, π(θ, α) = π(θ, α′) = 1 for all θ ∈ Θ,

then A is not emboldened by a shift in D's hassling capabilities.

Proposition 9: Consider the set of hassling games G . Let α, α′ ∈ A with α′ > α,

and let σ∗(α) and σ∗(α′) denote the pure strategy Bayesian Nash equilibria to these games

under parameters α and α′. If the General Analysis Assumptions hold, then UD(θ, α) is

absolutely continuous and di�erentible almost everywhere in θ, and can be expressed as

UD(θ, α) = UD(θ, α) +
∫ θ
θ

∂
∂θ

(−π(τ |α)CD(τ |τ, α)dτ) .16 Additionally, the following conditions

hold:

(i.) If A �avoids war�, is �unconstrained� in α and α′, and∫ θ

θ

(
∂CD
∂θ

(τ |τ, α′)− ∂CD
∂θ

(τ |τ, α)

)
dτ ≥0,

in the direct mechanism, then improvements in public hassling capabilities produce a deter-

rence failure.

15Also note that voluntary agreements prevents UD(θ, α) < WD.
16Referencing earlier de�nitions, π(θ, α) = πg(σ∗(θ, α)), CD (θ, θ, α) = CgD (σ∗(θ, α), σ, α), π(θ, α′) =

πg(σ∗(θ, α′)), and CD (θ, θ, α′) = CgD (σ∗(θ, α′), σ, α′).

54



(ii.) if A is �unconstrained� in α and α′ and

∫ θ

θ

π(τ |α′)
(
∂CD
∂θ

(τ |τ, α′)
)
dτ −

∫ θ

θ

π(τ |α)

(
∂CD
∂θ

(τ |τ, α)

)
dτ ≥ 0

in the direct mechanism, then improvements in public hassling capabilities produce a deter-

rence failure.

(iii.) If

UD(θ, α)− UD(θ, α′) +

∫ θ

θ

π(τ |α′)
(
∂CD
∂θ

(τ |τ, α′)
)
dτ −

∫ θ

θ

π(τ |α)

(
∂CD
∂θ

(τ |τ, α)

)
dτ ≥ 0

in the direct mechanism, then improvements in public hassling capabilities produce a deter-

rence failure.

Proof: See next subsection.

The next few paragraphs discuss the logic of Proposition 9. The structure of Proposition

9 is framed to describe the least general case �rst, and then move into more general cases.

The critical take-away from Proposition 9 is the relationship between improved hassling ca-

pabilities and deterrence failure is determined by three factors: whether improved hassling

capabilities results in D becoming more predictable, A becoming emboldened, or A becoming

constrained.

When A is unconstrained and avoid wars (Case i. in Proposition 9), without war ever

occurring, increases in hassling capabilities can diminish D's surplus by reducing the impact

of D's private information, essentially making D more predictable. Modifying the expression

in Proposition 3 in the text, within this case it is possible to represent a type θ parameter α

D's utility as

UD(θ, α) = WD −
∫ θ

θ

∂CD
∂θ

(τ |τ, α) dτ.

The WD term represents the costs from going to war. The expression
∫ θ
θ
∂CD
∂θ

(τ |τ, α) dτ is

the partial derivative of D's cost function with respect to their true type integrated over

their true type when their reported type equals their true type. While this is a complicated
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expression, there are some ways to make this conceptually simpler. As one example, assume

that when faced with any type α ∈ A, A plays the same t; this is how it was in the model

in the text. Also within this example, assume that D �accepting� is playing h, D hassling

is playing h′, and these two actions constitute the entire set H. If this is the case, the∫ θ
θ
∂CD
∂θ

(τ |τ, α) dτ expression can be simpli�ed to CD(h′|θ, α)− CD(h′|θ, α), making the full

for a deterrence failure CD(h′|θ, α′) − CD(h′|θ, α′) − (CD(h′|θ, α)− CD(h′|θ, α)) ≥ 0; essen-

tially, this condition most directly shows that when there is a larger di�erence in the e�ect

of costs for types θ and θ for parameter α relative to the di�erence in costs between types for

parameter α′, this produce a deterrence failure.17 So while here there are more moving parts

to this simpler expression, the integral equation captures these additional moving parts, in-

cluding the following: (a) the partial e�ect of D's true type θ on their selected h; (b) how

di�erent types of D's play the game di�erently and how this changes A's selected t; both of

which intuitively could be thought of as �predictability.�

When A is unconstrained but does not always avoid war (Case ii. in Proposition 9), now

whether A is emboldened to go to war by a change in α plays a role. Modifying the expres-

sion in Proposition 9, within this case it is possible to represent a type θ parameter α D's

utility as

UD(θ, α) = WD −
∫ θ

θ

π(τ |α)
∂CD
∂θ

(τ |τ, α) dτ.

Outside of D's wartime utility, D's expected utility now consists of the
∫ θ
θ
π(τ, α)∂CD

∂θ
(τ |τ, α) dτ

term. In addition to accounting for the spread in costs across private types, this expression

now also takes into account whether a type θ goes to war (π(θ|α) = 0) or not. When A is

emboldened, it is not just that D must go to war (and receive their wartime payo�) more;

all type D's that are not willing to go to war also incur losses because the spread of possible

hassling responses are truncated, meaning that A's greater selected level of rising technology

is also eating into D's bargaining surplus.

Finally, when A is constrained (Case iii.), the utility that type θ D attains becomes a

salient factor. In the model in the text, A selected a level of rising technology where type θ

either went to war (Proposition 1, Case 2) or hassled and was indi�erent between war and

hassling (Proposition 1, Case 1). However, sometimes the costs that A incurs from hassling

or from investing in the rising technology (or both) makes A hold back on their level of

17It is useful to note that because CD is decreasing in θ, CD(h′|θ, α)− CD(h′|θ, α) < 0.
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investing, which can produce a value for UD(θ, ·) 6= WD. Alternatively, this case describes

what happens when changes in D's hassling capabilities also alter D's wartime capabilities.

For example, if UD(θ, α) < UD(θ, α′), then a deterrence failure can never occur, because

types θ always do better following improvements in hassling capabilities. Alternatively, if

UD(θ, α) > UD(θ, α′), then deterrence failures can still occur, but not necessarily (it will be

contingent upon the remaining terms).

9.5 Proof of Proposition 10

What follows here is a derivation of Milgrom Segal's 2003 envelope theorem results.18 Lemma

1 implies that for hassling game G and equilibrium σ∗, there exists an incentive compatible

direct mechanism yielding the same outcome. For D, the direct mechanism is given by

π(θ|α) = πg(σ∗(θ, α)), VD(θ′|α) = V g
D(σ∗(α, θ)) and CD (θ|θ, α) = Cg

D (σ∗(θ, α)|θ, α). I de�ne

Φ(θ′|θ, α) as the utility a type (θ, α) D receives from announcing type θ′,or

ΦD(θ′|θ, α) =(1− π(θ′|α))WD + π(θ′|α) (VD(θ′|α)− CD(θ′|θ, α)) .

With this notation, I can re-write D's utility from equation (10) in the notation of the direct

mechanism with truthful revelation occurring, or

UD(θ, α) =ΦD(θ|θ, α) = (1− π(θ|α))WD + π(θ|α) (VD(θ|α)− CD(θ|θ, α)) .

I can de�ne the incentive compatibility conditions as ΦD(θ|θ, α) ≥ Φ(θ′|θ, α) for all θ, θ′ ∈ Θ,

or

θ ∈argmaxθ̂∈Θ ΦD(θ̂|θ, α).

Logically, when incentive compatibility holds, ΦD(θ′|θ, α) ≤ UD(θ, α) for any θ′ 6= θ. This

means I can re-write the incentive compatibility constraint as

θ′ ∈argmaxθ∈Θ {ΦD(θ′|θ, α)− UD(θ, α)} . (15)

Because CD(θ′|θ, α) (and therefore ΦD(θ′|θ, α)) is di�erentiable in θ, for any point θ′ ∈ Θ

where d
dθ
UD(θ′, α) exists (I will discuss existence soon), di�erentiating equation 15 with

18A close version of this was provided in Ilya Segal's outstanding notes on mechanism design.

57



respect to θ at θ = θ′ yields[
∂

∂θ
ΦD(θ′|θ, α)− d

dθ
UD(θ, α)

]
|θ=θ′ = 0,

or

d

dθ
UD(θ′, α) =

∂

∂θ
ΦD(θ′|θ′, α) =

∂

∂θ
(−π(θ′|α)CD(θ′|θ′, α)) .

The logic here is that the total derivative of D's utility with respect to their true type is

equal to the direct e�ect of D's true type on the cost function, without needing to consider

the indirect e�ects of true type θ on reported type θ′. Additionally (and I will use this in

the next part of the proof), when UD is di�erentiable in type, I can see that D's utility is

weakly increasing in type because, by assumption, ∂
∂θ
CD ≤ 0.

However, I haven't de�ned if function UD(θ, α) is ever di�erentiable in θ. By the de�ni-

tion of incentive compatibility, I can say

UD(θ′, α)− UD(θ, α) ≤ΦD(θ′|θ′, α)− ΦD(θ′|θ, α)

or

UD(θ′, α)− UD(θ, α) ≤ π(θ′|α) (−CD(θ′|θ′, α) + CD(θ′|θ, α)) (16)

And similarly

UD(θ′, α)− UD(θ, α) ≥ΦD(θ|θ′, α)− ΦD(θ|θ, α) = π(θ|α) (−CD(θ|θ′, α) + CD(θ|θ, α)) (17)

Case 1: Assume θ′ > θ. This implies CD(θ′|θ′, α) ≤ CD(θ′|θ, α).

Under the condition that | ∂
∂θ
CD(θ′|θ, α)| ≤M and that π(θ′|α) ∈ [0, 1], I can say

UD(θ′, α)− UD(θ, α) ≤ π(θ′|α)
(
−CD(θ′|θ′, α) + CD(θ′|θ, α)

)
≤
(
−CD(θ′|θ′, α) + CD(θ′|θ, α)

)
≤M(θ′ − θ).

The �rst inequality holds by the IC constraints above. The second holds because be-

cause π(θ′, α) ∈ {0, 1} and −CD(θ′|θ′, α) + CD(θ′|θ, α) is positive. The third holds because

| ∂
∂θ
CD(θ′|θ, α)| ≤M implies (given that ∂

∂θ
CD is negative) − ∂

∂θ
CD(θ′|θ, α) ≤M .

Through symmetry, I can say UD(θ, α)− UD(θ′, α) ≥M(θ − θ′)
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Case 2: Assume θ′ < θ. This implies CD(θ|θ, α) ≤ CD(θ|θ′, α). From the second IC

constraint, because π(θ, α) ∈ {0, 1} and −CD(θ|θ′, α) + CD(θ|θ, α) is negative, and because

| ∂
∂θ
CD(θ′|θ, α)| ≤M

UD(θ, α)− UD(θ′, α) ≥ π(θ|α)
(
−CD(θ|θ′, α) + CD(θ|θ, α)

)
≥
(
−CD(θ|θ′, α) + CD(θ|θ, α)

)
≥M(θ′ − θ)

And by symmetry UD(θ, α)− UD(θ′, α) ≤M(−θ′ + θ)

Overall, for any θ, θ′ ∈ Θ, it holds that |UD(θ′, α) − UD(θ, α)| ≤ M |θ′ − θ|. Thus, I can

say that UD(θ, α) is Lipshitz continuous in θ, which implies that UD(θ, α) is absolutely con-

tinuous in θ and di�erentiable almost everywhere in θ. Therefore, I can express UD as the

integral of its derivative, which is

UD(θ, α) =UD(θ, α) +

∫ θ

θ

∂

∂θ
(−π(τ |α)CD(τ |τ, α)dτ) . (18)

I can then derive the conditions above through algebra.

�
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